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Abstract

Due to the importance of notions of dependence throughout all of science, various
logics and logical frameworks for reasoning about dependence and independence
have been proposed. Recently, Baltag and van Benthem introduced the logic LFD in
[6] as a minimalistic “core” logic of functional dependence. It focuses on a local sense
of dependence to retain classical semantics, endowing it with a modal character and
most remarkably, decidability.
In this thesis, we aim to improve the understanding of LFD in connection with
other logics, answering some of the open questions from [6]. Most notably, we
solidify the modal viewpoint of LFD by defining a notion of bisimulation for which we
show an analogue of van Benthem’s Theorem, precisely capturing the range of LFD
within first-order logic under various translations. We also compare its expressive
power with guarded fragments of first-order logic, and relate LFD to a logic with
team semantics. Lastly, we clarify the limits of LFD’s decidability by proving the
undecidability of a natural extension, and analyse the complexity of its satisfiability
and model checking problem.
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Chapter 1

Introduction

1.1 Dependence in a Logical Context

As the phenomenon of dependence appears in many different areas of science and
daily life, numerous different notions of dependence have been studied in math-
ematics and philosophy. Here we focus on its strongest form, namely functional
dependence, where given variables deterministically determine other variables.
One of the earliest systematic studies of functional dependence was in the context
of database theory by Armstrong [3], where the following basic structural properties
emerged. Let X, Y, Z be sets of variables.

• (Reflexivity) If Y ⊆ X, then Y functionally depends on X.

• (Augmentation) If Y functionally depends on X, then Y ∪ Z functionally
depends on X ∪ Z.

• (Transitivity) If Z functionally depends on Y and Y functionally depends on
X, then Z functionally depends on X.

These are also called Armstrong’s Axioms, and present a sound and complete way
to infer all possible functional dependencies for a given set of variables. Hence this
already represents a language in which we can reason about statements concerning
functional dependence, albeit a very weak one. To obtain more expressive power,
the idea of extending logics with the ability to talk about some form of dependence
has come up.
A prominent example of extending classical first-order logic FO to talk about (func-
tional) dependencies and independencies between its variables is independence-
friendly logic (IF-logic), introduced by Hintikka and Sandu in [24]. The idea used
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there, commonly referred to as dependence between quantifiers, allows one to explic-
itly state on which other variables some quantified variable depends. As an example
of how this can affect the meaning of sentences, consider the statement that some
function f : R → R is continuous; for all x ∈ R and all ε > 0 there exists some
δ > 0 such that for all y ∈ R with |x − y| < δ we have |f(x) − f(y)| < ε. The
quantification pattern is of the form

∀x∀ε∃δ∀y ϕ(x, ε, δ, y).

In the case of classical first-order semantics, the δ depends on ε and x. But in IF-logic
we could now express that δ only depends on ε, and not on x. This corresponds to
uniform continuity, which is well known to be a stronger notion than usual continuity.
In this case, uniform continuity can still be expressed by a first-order sentence with a
different quantification pattern, but this is in general not possible for every formula
or sentence of IF-logic. Indeed, even though the quantifiers in IF-logic are essentially
first-order (ranging over elements in structures), it was shown that its expressive
power coincides with that of existential second-order logic Σ1

1.
Initially, the only known semantics for IF-logic were based on Skolem functions or
games of imperfect information [31]. As a means to provide a compositional, model-
theoretic semantics for IF-logic, the now called team semantics came to be, originat-
ing in Hodge’s paper on compositional semantics for logics of imperfect information
[26]. In team semantics, formulae are evaluated over sets of assignments, called
teams. Together with the idea of Väänänen [34] to view dependencies as atomic
properties of teams, rather than annotations of quantifiers, team semantics presents
the fundamental framework of many modern logics of dependence, independence,
and imperfect information, see e.g. [1].
A drawback of the approaches mentioned above is that most of them lead to in-
herently non-classical semantics. For example, logics based on team semantics are
usually not closed under classical negation, and contain connectives or atoms that
violate classical laws such as the law of the excluded middle.
The rather different approach of creating dependencies between variables that is
used in [6] for LFD aims to retain most classical features of FO. It is based on gen-
eralized assignment semantics, which originates in a general relativization technique
in algebraic logic, see e.g. [32]. Intuitively, we consider classical Tarski semantics for
FO, but drop the assumption that all possible assignments of variables to values are
available, thus inducing dependencies between variables via gaps in the assignment
space. As a consequence, our classical structures A now come together with a fixed
set of variables V and a fixed set of admissible assignments T ⊆ AV (also called
team), where A is the universe of A. Quantifiers are then restricted to yield assign-
ments in this set T instead of the usual full space of assignments AV . Apart from
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this, formulae are still evaluated on a single “current” assignment, which allows us
to have classical semantics for boolean connectives. Consequently, the logic focuses
on a local sense of dependence by introducing atoms DXy. When evaluated at some
current assignment s ∈ T , these state that within the whole team, fixing the values
of X to their current ones (at s) implies fixing the value of y to its current one (at
s). We quote the authors’ brief conclusion from [6, Section 1.3]:

“The resulting logic of functional dependence LFD is quite expres-
sive. While capturing the main properties of functional dependence, it
retains all classical boolean operators with their standard semantics and
laws; thus showing that dependence is not an intrinsically non-classical
phenomenon. Moreover, LFD is remarkably simple and well-behaved,
having transparent axiomatizations, with nice meta-properties [...]. As
it will become clear, LFD is also a modal logic, with interesting connec-
tions with epistemic logics and inquisitive logics. Finally, LFD offers a
platform for studying concrete notions of dependence in many fields.”

In [6], a lot of proof-theoretic results were shown, including a complete proof-calculus
for LFD. The modal perspective was introduced early, and many results were proven
with both classical and modal techniques. For example, a proof of decidability
via syntactic type models was given in [6, Section 4], a purely proof-theoretic one
was developed in [6, Section 5], and finally in [6, Section 6] the decidability of
LFD was also shown via a modal filtration argument. Apart from this, LFD is
a fragment of first-order logic, and inherits properties such as compactness and
recursive enumerability of its validities. Various extensions and applications of LFD
in concrete settings were explored in [6, Sections 7, 8]. In this thesis we aim to answer
some of the many open questions raised in said paper, improving the understanding
of LFD – especially in the sense of its expressive power and relation to other logics
– from a model-theoretic point of view.

1.2 Contributions & Structure

The original contributions and structure of this thesis can be summarised as follows.
In Chapter 2 we formally define the syntax and semantics of LFD. We also consider
a natural extension of LFD and prove its undecidability, answering an open question
from [6, Section 7.2] and clarifying the gap between decidability and undecidability
for logics of functional dependence.
The question for a “notion of bisimulation for LFD which captures its precise range
within the first-order language over standard models” was raised in [6, Section 3.1].
We answer this in Chapters 3 and 4 as follows. In Chapter 3 we define a notion
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of bisimulation for LFD and relate it to logical equivalence via an analogue of the
classical Ehrenfeucht-Fraïssé Theorem. We also give many examples demonstrating
the limits of LFD’s expressive power. Continuing in Chapter 4, we extensively cover
possible first-order translations of LFD, and proceed to prove an analogue of van
Benthem’s Theorem in Section 4.1.5, characterising LFD as the LFD-bisimulation-
invariant fragment of FO under reasonable first-order translations.
At the end of Chapter 4 we compare LFD to guarded fragments of FO and show how
to relate it to well-known logics with team semantics.
Section 5.1 gives some basic complexity bounds of the satisfiability problem of LFD,
and Section 5.2 characterises the complexity of the model checking problem for LFD.
Lastly, we discuss some ramifications of our results on the (still open) question of
whether LFD has the finite model property in Chapter 6. Although technically
not part of this thesis, we also want to mention the python library written by the
author1, which was used to find and minimize most of the examples in this thesis,
and may be helpful to others.

1.3 Notation & Conventions

• Classical structures will be denoted by uppercase gothic letters such as A,B,C
and their corresponding universes by the corresponding latin letters A,B,C.

• We will write ar(R) for the arity of relation symbols R.

• Tuples of elements or variables will be written as bold lowercase letters such as
a,b,x,y, and we denote the set of their components by enclosing them with
brackets, i.e. [a] := {a | a occurs in some position of a}. If s : V → A and
x = (x1, . . . , xn) ∈ V n, we will write s(x) := (s(x1), . . . , s(xn)) ∈ An.

• Throughout this thesis we will sometimes assume variable or symbols to be
“fresh”. What we mean by this is that said variable or symbol has not been
used before in the respective context, so that no conflicting usage can occur.

• Disjoint unions are emphasized by using ] instead of ∪.

• The class of all ordinals is denoted by Ord.

1https://git.rwth-aachen.de/philpuetzstueck/lfd-sat.

https://git.rwth-aachen.de/philpuetzstueck/lfd-sat


Chapter 2

LFD and Extensions

2.1 Syntax and Semantics of LFD

As we have seen in the introduction, the structures relevant for us come together
with a fixed set of variables V and a fixed set of admissible assignments (henceforth
called the team), similar to the fixed vocabulary τ of classical structures.

Definition 2.1 (Type). Let τ be a relational vocabulary and V a set of variables.
We call (τ, V ) a type. If τ and V are finite, then we say (τ, V ) is a finite type.

Definition 2.2 (Dependence models, [6, Definition 2.1]). A dependence model M
of type (τ, V ) consists of a τ -structureM with universeM , together with a nonempty
team T ⊆MV . We usually write M = (M, T ). We also use TM to refer to the team
of M. Pointed dependence models M, s distinguish a “current” assignment s ∈ TM.
The class of all pointed (τ, V ) dependence models is given by

DEP [τ, V ] := {M, s |M is a (τ, V ) dependence model and s ∈ TM}.

We will use bold capital letters such as M,N for dependence models, M,N for their
underlying structures, and M,N for their universes.

For relation symbols R ∈ τ we will also denote their interpretation by RM instead
of RM. For a team T with domain V , a variable x ∈ V and a tuple x of variables in
V we use the notation

T (x) := {s(x) | s ∈ T} and T (x) := {s(x) | s ∈ T}.

In examples where V is finite, it is convenient to fix some enumeration v of V so we
can denote assignments s by their tuple of values s(v). Conversely, given some fitting
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tuple of values a, the notation v 7→ a represents an assignment s with s(v) = a.
This allows us to view T as a relation or database, i.e. a table where each variable
has its own column in the order of v, and the rows are given by s(v) for each s ∈ T .

Example 2.3. Consider V = {x, y, z} with the order v = xyz. If we have a team
that contains the assignments

xyz 7→ 000, xyz 7→ 110, xyz 7→ 121, xyz 7→ 221,

then we can represent said team in a table such as

x y z

0 0 0
1 1 0
1 2 1
2 2 1

.

In this table, we can see that y determines z (or: z functionally depends on y),
because fixing the value of y fixes the value of z. Indeed, fixing the value of y to 0
or 1 corresponds to only considering a single row, whereas fixing y to 2 corresponds
to looking at the bottom two rows, in which z has the constant value 1. At the
same time we can see that in these two bottom rows, x can still vary, so x does not
functionally depend on y.

As mentioned in the introduction and apparent from the definition of dependence
models, we want to evaluate formulae with respect to a “current” assignment to re-
tain classical boolean semantics. Hence, it also makes sense to consider the following
local notion of dependence.

Example 2.4 (Local functional dependence). Consider again the table of Exam-
ple 2.3. We say that x locally depends on y at the assignment (1, 1, 0), because
fixing y to be its value in this specific assignment, namely 1, also fixes x to its value
in said assignment. As another example, we have that y locally depends on z at
the assignment (1, 2, 1) (or likewise at (2, 2, 1)), because z = 1 entails y = 2 in the
regarded table.
Notice that in this context, usual functional dependence is just the universal version
of this local dependence: y depends on X in the whole team iff y locally depends on
X at every assignment in the team. For this reason, we also refer to usual functional
dependence as global (functional) dependence.

To talk about this form of dependence, atoms DXy are introduced for sets of vari-
ables X and variables y. They are read as “X locally determines y” or “y locally
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depends on X”. It was also argued that from this local viewpoint, it is more natural
to consider so-called dependence quantifiers DX that are in a sense “dual” to the
ones we know from first-order logic; intuitively, rather than letting the variables in
X vary freely, they fix the current values of X, and allow all other variables to vary.
In other words, within the whole team, fixing the values of X to the current ones
fixes ϕ to be true. We give the formal definitions of syntax and semantics below.

Definition 2.5 (Syntax of LFD, [6, Definition 3.1]). For a type (τ, V ) the syntax of
formulae in LFD(τ, V ) is given by

ϕ ::= Rx | DXy | ¬ϕ | ϕ ∧ ϕ | DX ϕ,

where R ∈ τ is a relation symbol, x ∈ V ar(R) is a tuple of variables of appropriate
length, X ⊆ V is finite, and y ∈ V .

Notation 2.6 (Abbreviations of formulae, [6, p. 9]).

1. Boolean connectives ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ are defined as usual.

2. We use Dxy instead of D[x]y and likewise for Dx ϕ.

3. We set DXY := ∧
y∈Y DXy for finite Y ⊆ V , and also DXy := DX [y].

4. The dual of DX ϕ is defined as EX ϕ := ¬DX ¬ϕ.

5. For the special case X = ∅ we use ∀ϕ := D∅ ϕ and ∃

ϕ := E∅ ϕ.

Formulae of the form Rx and DXy are the atoms of LFD. The former are called
relational atoms, the latter dependence atoms. We refer to the DX and EX as
dependence quantifiers or modalities of LFD, and also call ∀and ∃global modalities.
As we will often deal with dependence on sets of assignments, the following will allow
us to give cleaner definitions.

Definition 2.7 (Agreement relation). On some team T with domain V we define
equivalence relations =X ⊆ T × T for X ⊆ V as follows: given s, t ∈ T let

s =X t iff s(x) = t(x) for all x ∈ X.

In particular =∅ = T × T . We also write s =x t instead of s =[x] t for tuples of
variables x. The following notation will also be useful later on: let s∩ t refer to the
inclusion-maximal set on which s and t agree, so

s∩ t := {x ∈ V | s =x t}.
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Definition 2.8 (Semantics of LFD,[6, Definition 3.2]). Consider a type (τ, V ) and
M, s ∈ DEP [τ, V ]. The satisfaction relation uses the usual semantics of boolean
connectives together with

M, s |= Rx iff s(x) ∈ RM.

M, s |= DXy iff t =X s implies t =y s for all t ∈ TM.

M, s |= DX ϕ iff M, t |= ϕ for all t ∈ TM with t =X s.

Here R,x, X, y are as in Definition 2.5. Now EX ,

∃

,

∀have the expected semantics:

M, s |= EX ϕ iff M, t |= ϕ for some t ∈ TM with t =X s.

M, s |= ∃

ϕ iff M, t |= ϕ for some t ∈ TM.

M, s |= ∀

ϕ iff M, t |= ϕ for all t ∈ TM.

The semantics given above formalize the local notion of dependence we introduced in
Example 2.4. It is also this locality, together with the semantics of the dependence
quantifiers DX and EX , which further emphasizes the modal character we mentioned
in the introduction. Indeed, notice the similarities to the modalities � and ♦ of
propositional modal logic ML; the binary relations =X on our teams can be viewed
as the accessibility relations of the modality DX and its dual EX on the team. In
this sense, a dependence model M induces a type of Kripke model that has TM

as its universe and the accessibility relations (=X)X⊆V . We formalize this idea in
Section 4.1.2.
Also note that usual functional dependence is expressible in LFD via ∀

DXy, which
guarantees that X locally determines y at every assignment in the team, i.e. that
X determines y in the whole team.

Fact 2.9 ([6, Fact 2.4]). Inspired by Armstrong’s Axioms, which were mentioned
in the introduction, we obtain the following LFD-validities for our local dependence
atoms. For every set of variables V the following formulae hold at every pointed
(∅, V ) dependence model:

1. (Reflexivity) DXx for all (finite) X ⊆ V and x ∈ X.

2. (Monotonicity) DXy → DZy for all (finite) Z ⊆ V , X ⊆ Z, and y ∈ V .

3. (Transitivity) (DXY ∧DYZ)→ DXZ for all (finite) X, Y, Z ⊆ V .

Moreover, [6, Proposition 2.5] gives an interesting representation theorem for rela-
tions with such properties. Specifically, for any relation D ⊆ P × V which satisfies
Reflexivity and Transitivity as above, there exists a dependence model where D is
the local dependence relation at all assignments.
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Definition 2.10 (Free variables, [6, Definition 3.3]). The free variables Free(ϕ) of
a formula ϕ ∈ LFD are defined as usual for boolean connectives and relations, so

Free(Rx) = [x], Free(¬ϕ) = Free(ϕ), Free(ϕ ∧ ψ) = Free(ϕ) ∪ Free(ψ),

together with
Free(DXy) = X and Free(DX ϕ) = X.

We call ϕ a sentence if Free(ϕ) = ∅. In this case ϕmust be a boolean combination of
formulae of the form ∀

ψ,

∃

ψ or D∅y. Clearly

∀

ψ and ∃

ψ do not require a current
assignment to be evaluated. Moreover, M, s |= D∅y if and only if t =y s for all
t ∈ TM with t =∅ s. Since t =∅ s is vacuously true for all pairs of assignments
(t, s), we see that the atoms D∅y just state that y is constant throughout the team.
Hence, if ϕ is a sentence, then we can simply write M |= ϕ whenever M, s |= ϕ for
some (or equivalently, for all) s ∈ TM.

Fact 2.11 (Locality, [6, Fact 3.4]). If Free(ϕ) ⊆ X and s =X t for s, t ∈ TM, then
M, s |= ϕ iff M, t |= ϕ. In the same fashion, if M, s |= ϕ, then M, s can forget about
variables and relations that do not occur in ϕ and still satisfy ϕ. Hence, for all
questions regarding formulae in LFD(τ, V ) it suffices to consider (τ, V ) dependence
models, even though ϕ can also be evaluated on models of larger types.

Lastly we want to restate the following facts about LFD that were already mentioned
in the introduction:

1. LFD is essentially a fragment of FO. The so-called standard translation of
LFD into FO is introduced in [6, Section 3.2], and will be covered in depth in
Section 4.1, where we also give two other first-order translations of LFD.

2. LFD is decidable. See e.g. [6, Theorem 4.11].

2.2 LFD with Functions and Explicit Equality

LFD with functions. In [6, Section 7.1] the extension of LFD with functions is
introduced. As for FO, one regards 0-ary functions as constants, and defines terms
h inductively as variables x or functions f applied to a tuple of terms h. One then
allow sets of terms H to replace sets of variables in the dependence formulae; the
atom DHh states that the value of the term h depends locally on the set of values
of the terms in H, and likewise for DH ϕ. Agreement on sets of terms s =H t is then
the basic notion, from which semantics of DHh and DH ϕ is derived as for ordinary
LFD (cf. Definition 2.8). The specifics are not important here.
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In [6, Fact 7.3] it is shown that this extension of LFD retains the decidability of LFD.
For this, the authors give a satisfiability-preserving translation of formulae in this
functional extension to formulae in plain LFD. The translation encodes terms as a
fresh variables. For example, given a unary function f and a variable x the term
fx is simulated by introducing a new variable vfx and requiring a global functional
dependence of vfx on x via ∀

Dxvfx. The main reason we mentioned this extension
is to give some perspective on decidable extensions of LFD, and to talk about the
following interesting fact that is required for the proof of the reduction from LFD
with functions to plain LFD.

Fact 2.12 ([6, Fact 7.2]). For every dependence model M, s there exists an LFD-
equivalent dependence model N, t such that

TN(x) ∩ TN(y) = ∅, x, y ∈ V, x 6= y,

where V denotes the domain of TN. In words, this states that if x, y are distinct
variables, then the set of values taken by x is disjoint from the set of values taken
by y. We call such models N distinguished.

Proof. Postponed to Example 3.14. �

Fact 2.12 implies that LFD cannot define (or even enforce) explicit equality. Indeed,
any dependence model M, s with s(x) = s(y) has an LFD-equivalent dependence
model N, t where t(x) 6= t(y). It is therefore natural to consider an extension of
LFD which allows to express this.

LFD with explicit equality. The extension LFD=, introduced in [6, Section 7.2],
allows on top functions and constants also the use of equality atoms h = h′ between
terms h and h′. It is also remarked that LFD= is still a fragment of FO, since
the standard translation embedding LFD into FO (surveyed in [6, Section 3.2] and
Section 4.1.1) can easily be extended to LFD= (cf. Remark 4.7).
Baltag and van Benthem gave a complete Hilbert-style proof system for LFD= in [6,
Section 7.2] . Since the extension of LFD with functions retained the decidability
of plain LFD, it seemed plausible to assume that the same holds for LFD=. It was
however left as an open question, as the previous proof techniques did not seem
to work. In the next section we give a negative answer to this by proving that
LFD= is undecidable. In particular, this already holds for the relational fragment
of LFD=, which only extends LFD by equality atoms x = y for variables x, y. Since
we can furthermore simulate function symbols by fresh variables as described in the
previous section (originally [6, Fact 7.3]), we will only ever consider the relational
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fragment of LFD= in this thesis, in accordance with the fact that our types (τ, V )
only contain relational vocabularies.

Definition 2.13 (LFD=). In this thesis, LFD= will denote the extension of LFD by
equality atoms x = y between variables x, y with the semantics:

M, s |= x = y iff s(x) = s(y).

This is the relational variant of the extension described in [6, Section 7.2].

2.3 Undecidability of LFD with Explicit Equality

We claim that Fact 2.12 can be seen as one of the main reasons that LFD or LFD
with functions is decidable, while LFD= is not. The fact makes it considerably more
difficult to express any sort of paths of relations (think orders) or confluence within
LFD. To understand what we mean by this, consider FO, where a simple sentence
such as ∀x∃yRxy yields an infinite R-path (or loop) in the universe of its models.
The crucial point is that x can take any value, in particular the values taken by
y. On the other hand, if we consider the very similar LFD-sentence ∀ExRxy, then
this implies only that every value of x has an R-partner in the values of y. We can
assume without loss of generality that the values of x are disjoint from the values
of y. Hence, we will find an R-partner in the values of y for every value of x, but
nothing more. This existence of R-partners for the values of y is not implied by
our sentence. Overall, instead of obtaining a Skolem function which we can iterate
arbitrarily often to obtain an infinite path of R-successors as in FO, we just get some
collection of x- and y-values that are R-pairs, i.e. R-paths that stop after a single
step.
We can see how this limits LFD’s ability to enforce confluence, grids, or cartesian
products within models, which often lead to undecidability. But this does not apply
to LFD=. Namely, the crucial part for the undecidability of LFD= is that Fact 2.12
fails to hold, and we can use equality to “copy values between variables”. For
example, we can enforce T (x) ⊆ T (y), as described in the following lemma.

Lemma 2.14. For variables x, y we define the LFD=(∅, {x, y})-sentence

ψx⊆y := ∀

Ex(y = x).

For every dependence model M on which we can evaluate ψx⊆y we obtain

M |= ψx⊆y =⇒ TM(x) ⊆ TM(y).
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Proof. Let M |= ψx⊆y and a ∈ TM(x), so s(x) = a for some s ∈ TM. Per semantics
of ∀we have M, s |= Ex(y = x), so there exists t ∈ TM with t =x s and M, t |= x = y.
Hence

a = s(x) = t(x) = t(y) ∈ TM(y). �

We show in Example 3.15 that the reverse implication “T (x) ⊆ T (y) implies M |=
ψx⊆y” fails to hold. Moreover, we prove that this is not because we have the wrong
definition of ψx⊆y, but rather because the inclusion T (x) ⊆ T (y) cannot be defined
in LFD= at all.

Conservative Reduction Classes. We will give a brief introduction to conser-
vative reduction classes. For a more complete background we refer the reader to
[12].
Let X, Y be fragments of FO. A computable function f : X → Y is a conserva-
tive reduction if it simultaneously translates the satisfiability and finite satisfiability
problem:

1. ψ ∈ Sat(X) iff f(ψ) ∈ Sat(Y ),

2. ψ ∈ Fin-Sat(X) iff f(ψ) ∈ Fin-Sat(Y ).

Here Sat(X) are the satisfiable formulae of X, and Fin-Sat(X) are the finitely sat-
isfiable formulae of X, i.e. those that have a finite model. Similarly, let Non-Sat(X)
denote the unsatisfiable formulae, Val(X) the valid formulae, and Inf-Axioms(X)
the infinity axioms of X, i.e. those formulae that are satisfiable but have no finite
models.
Now we say that Y is a conservative reduction class if there exists a conservative
reduction f : FO→ Y . Essentially, these are fragments of FO for which the satisfia-
bility and finite satisfiability problem are exactly as hard as for FO. A well-known
theorem of Trakhtenbrot states that Fin-Sat(FO),Non-Sat(FO) and Inf-Axioms(FO)
are pairwise recursively inseparable1 and therefore undecidable, see [12, Theorem
2.1.30]. It is easy to see that this carries over to conservative reduction classes. In
particular, if a fragment X of FO is a conservative reduction class, then Sat(X),
Non-Sat(X), Val(X), Fin-Sat(X), and Inf-Axioms(X) are all undecidable.
One of the classical conservative reduction classes is the Kahr-Class, usually de-
noted as [∀∃∀, (ω, 1)]. It consists of those FO-sentences ∀x∃y∀zϕ(x, y, z) where ϕ is
a quantifier-free FO-formula which may only use an unbounded number of monadic

1Two disjoint sets X,Y are called recursively inseparable if there is no recursive (decidable) set
R such that X ⊆ R and R ∩ Y = ∅.
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predicates and a single binary relation. For the proof that this is indeed a conser-
vative reduction class, we refer the reader to [12, Chapter 3.1].
Below, we construct a conservative reduction from the Kahr-Class into an analogous
fragment of LFD=, namely LFD=-sentences with an unbounded number of monadic
predicates and a single binary relation, which we denote by LFD=[(ω, 1)].

Theorem 2.15. LFD=[(ω, 1)] is a conservative reduction class. In particular, LFD=

is undecidable.

Proof. As we mentioned above, LFD= is a fragment of FO, which we discuss later
in Remark 4.7. Since the Kahr-Class is already a conservative reduction class, by
transitivity of reductions it suffices to show that there exists a conservative reduction

[∀∃∀, (ω, 1)]→ LFD=[(ω, 1)], ψ 7→ ψ∗. (2.1)

To this end we prove the following two claims:

1. A (finite) classical model of ψ induces a (finite) dependence model of ψ∗.

2. A (finite) dependence model of ψ∗ induces a (finite) classical model of ψ.

Given ψ = ∀x∃y∀zϕ(x, y, z) in the Kahr-Class, note that ϕ ∈ LFD=[(ω, 1)]. There-
fore we can define the translation of ψ as

ψ∗ := ∀

(
ϕ(x, y, z) ∧Dxy ∧

5∧
i=0

ϑi

)
,

where the ϑi are formulae inspired by the ψx⊆y from Lemma 2.14, which allow us to
copy values between variables. They are necessary to construct a cartesian product
included in TM(x, z) for the regarded dependence models M. We require an extra
variable v as an additional “temporary storage” to copy values between variables.
So while we keep ϕ to contain only the variables x, y, z, overall we will need four
variables, whose order we fix to x, y, z, v. The ϑi are defined as:

ϑ0 = Exyv(z = x) (copy x to z),
ϑ1 = Exyv(z = y) (copy y to z),
ϑ2 = Exyz(v = x) (copy x to v),
ϑ3 = Exyz(v = y) (copy y to v),
ϑ4 = Ezv(x = z) (copy z to x),
ϑ5 = Ezv(x = v) (copy v to x).

To prove Claim 1, assume that we have a model A of ψ with universe A. Thus the
Skolem normal form of ψ is satisfied in some expansion of A. More specifically, there



14 CHAPTER 2. LFD AND EXTENSIONS

exists a function f : A→ A such that

A |= ϕ(a, fa, b), a, b ∈ A.

We construct the dependence model M = (A, T ) with team T defined by

T := {(a, fa, b, c) | a, b, c ∈ A}.

Remember that we denote assignments by their tuple of values. So here (a, fa, b, c)
represents the assignment (x, y, z, v) 7→ (a, fa, b, c). It is clear that y globally de-
pends on x, i.e. M |= ∀

Dxy, and that by choice of T we also have M |= ∀

ϕ(x, y, z).
The ϑi are satisfied at all assignments in T , since T (x, z, v) = A3 is a cartesian prod-
uct of the whole universe. Because ∀distributes over conjunction, i.e. ∀ϑ1 ∧

∀

ϑ2 ≡∀(ϑ1 ∧ ϑ2) for all ϑi ∈ LFD, we obtain M |= ψ∗. Notice that if A is a finite model,
then M is finite as well, since they share the same universe A. This concludes the
proof of Claim 1.
For the converse, Claim 2, suppose that we have a dependence model M = (M, T )
such that M |= ψ∗. Because of the global dependence M |= ∀

Dxy there exists a
function f : T (x)→ T (y) such that

t(y) = f(t(x)), t ∈ T. (2.2)

Note that we have T (y) ⊆ T (x), since ϑ1 and ϑ4 allow us to copy values from y to z
and from there to x, just as in Lemma 2.14. Hence we have f : T (x)→ T (x), i.e. we
can iterate f on values of x. Fix some arbitrary s ∈ T and set 0 := s(x), as well as
i := f i0 for i ∈ N.2 Since M is relational, we know that all subsets of the universe
of M induce a substructure of M. We construct our classical model for ψ as

A := M �A where A := {i | i ∈ N}.

The function f �A : A → A plays the role of the Skolem function for y in the
quantification ∀x∃y∀z of ψ. Now we need to make sure that ϕ(a, fa, b) actually
holds in M (and thus in A) for all a, b ∈ A. Per assumption we know

M |= ∀

ϕ(x, y, z) and thus M |= ϕ(t(x), f(t(x)), t(z)), t ∈ T.

Hence it suffices to show that

A× A ⊆ T (x, z). (2.3)

In the following we write ∗ as placeholder for not further specified elements of M.
2Here f i represents the i-fold composition of f .
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By the expression t ϑi−→ t′ for some t ∈ T we mean to express that the existence of
t′ ∈ T follows from M, t |= ϑi (by applying the “copy-rule” which ϑi represents).
Notice that if t ∈ T with t(x) = i, then t(y) = f(i) = i+ 1 by Eq. (2.2).

1. (0, 0) ∈ T (x, z) :
We know s looks like (0, 1, ∗, ∗). Since s ∈ T and

s = (0, 1, ∗, ∗) ϑ0−→ (0, 1, 0, ∗) =: t (copy x to z)

we see that t ∈ T with t(x, z) = (0, 0).

2. If (0, j) ∈ T (x, z), then also (0, j + 1) ∈ T (x, z) :
Per assumption we have t = (0, 1, j, ∗) ∈ T . Together with the derivation

t = (0, 1, j, ∗)
ϑ2−→ (0, 1, j, 0) (copy x to v)
ϑ4−→ (j, j + 1, j, 0) (copy z to x)
ϑ1−→ (j, j + 1, j + 1, 0) (copy y to z)
ϑ5−→ (0, 1, j + 1, 0) =: t′ (copy v to x)

we obtain t′ ∈ T with t′(x, z) = (0, j + 1).

3. If (i, j) ∈ T (x, z) then also (i+ 1, j) ∈ T (x, z) :
Per assumption we have t = (i, i+ 1, j, ∗) ∈ T . Together with the derivation

t = (i, i+ 1, j, ∗)
ϑ3−→ (i, i+ 1, j, i+ 1) (copy y to v)
ϑ5−→ (i+ 1, i+ 2, j, i+ 1) =: t′ (copy v to x)

we obtain t′ ∈ T with t′(x, z) = (i+ 1, j).

Now the inclusion (2.3) follows from the definition of A and a trivial induction. By
the above argument this proves A |= ϕ(a, fa, b) for all a, b ∈ A and hence

A |= ∀x∃y∀zϕ(x, y, z).

Thus A is a classical model for ψ. Again it is clear that if M is finite, then A is
finite as well, since its universe A is a subset of the universe of M. This concludes
the proof of Claim 2. �





Chapter 3

Bisimulation

We define bisimulation and standard logical tools for LFD. An analogue of the
classical Ehrenfeucht-Fraïssé Theorem relating bisimilarity with logical equivalence
is shown in Section 3.1. We use this theorem in Section 3.2 to prove the undefinability
of various natural statements about the team of a dependence model. Due to it being
only a small overhead, we will treat LFD and LFD= simultaneously and also consider
infinitary variants of these logics. Henceforth let L denote LFD or LFD=.

Definition 3.1 (Bisimulation). Let M and N be two dependence models of the
same type (τ, V ). A binary relation Z ⊆ TM × TN is an L-bisimulation between M
and N if for all (s, t) ∈ Z:

1. M, s and N, t agree on the atoms of L:

(a) For all R ∈ τ and x ∈ V ar(R) we have M, s |= Rx iff N, t |= Rx.

(b) For all (finite) X ⊆ V and y ∈ V we have M, s |= DXy iff N, t |= DXy.

(c) (Only if L = LFD=) For all x, y ∈ V we have s(x) = s(y) iff t(x) = t(y).

2. (back) For all t′ ∈ TN and all finite X ⊆ t′ ∩ t = {x ∈ V | t′ =x t} there is
some s′ ∈ TM with (s′, t′) ∈ Z and s′ =X s.

3. (forth) For all s′ ∈ TM and all finite X ⊆ s′ ∩ s = {x ∈ V | s′ =x s} there is
some t′ ∈ TN with (s′, t′) ∈ Z and t′ =X t.

The reason we need to restrict ourselves to finite sets X ⊆ t′ ∩ t is that we want
bisimilarity to correspond to logical equivalence (as we show later in Theorem 3.12)
and that LFD only allows finite sets within our modalities DX and EX . For finite
types, we can give the following equivalent definition.



18 CHAPTER 3. BISIMULATION

Fact 3.2 (Bisimulation for finite types). Let M and N be two dependence models
of the same finite type (τ, V ). Then Z ⊆ TM × TN is an L-bisimulation between M
and N if and only if

1. M, s and N, t agree on the atoms of L.

2. (back) For all t′ ∈ TN there exists s′ ∈ TM with (s′, t′) ∈ Z and s′ =X s, where
X = t′ ∩ t = {x ∈ V | t′ =x t}.

3. (forth) For all s′ ∈ TM there exists t′ ∈ TN with (s′, t′) ∈ Z and t′ =X t, where
X = s′ ∩ s = {x ∈ V | s′ =x s}.

The union of L-bisimulations is again an L-bisimulation, hence there is always some
inclusion-maximal L-bisimulation ∼L between two (τ, V ) dependence models M and
N (although it may be empty). In this sense we write M, s ∼L N, t and say M, s

is L-bisimilar to N, t whenever there exists an L-bisimulation Z between M and N
with (s, t) ∈ Z. If L is clear from context or irrelevant to it, we use ∼ instead of
∼L.

Remark 3.3. Notice that LFD=-bisimilar assignments induce partial isomorphisms
of the underlying classical structuresM of M andN of N; because of the requirement
that s, t with (s, t) ∈ Z agree on equalities, the map

π : M � s(V )
∼=−→ N � t(V ), s(x) 7→ t(x), x ∈ V

is a well defined bijection.1 Since s and t also agree on relational facts, we get

M |= Ra iff N |= Rπa, R ∈ τ, a ∈ s(V )ar(R).

Hence π is a partial isomorphism between M and N.

Definition 3.4 (Ordinal approximations to bisimulation). Let M, s and N, t be pointed
dependence models of the same type (τ, V ). We write M, s ∼0

L N, t if M, s and N, t

agree on L-atoms, and say that M, s and N, t are 0-L-bisimilar. If M and N are
clear from context, we shorten this to s ∼0

L t. We define s ∼αL t for ordinals α by
(transfinite) induction; in the case of successor ordinals, i.e. when defining s ∼α+1

L t,
we require the conditions

• (α+1)-back: For all t′ ∈ TN and all finite X ⊆ t′ ∩ t there exists some s′ ∈ TM

with s′ ∼αL t′ and s′ =X s.
1Here s(V ) denotes the image {s(v) | v ∈ V } of s, likewise for t.
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• (α+1)-forth: For all s′ ∈ TM and all finite X ⊆ s′ ∩ s there exists some t′ ∈ TN

with s′ ∼αL t′ and t′ =X t.

For limit ordinals λ, we say that s ∼λL t iff s ∼αL t for all α < λ, so essentially

∼λL =
⋂
α<λ

∼αL . (3.1)

Note that α-L-bisimilarity implies β-L-bisimilarity for all β < α. Furthermore, full
L-bisimilarity is now simply given by ∼L = ⋂

α∈Ord∼αL. As before, if L is clear from
context or irrelevant to it, we use ∼α instead of ∼αL.

Remark 3.5. In the case of finite types we can analogously adapt Fact 3.2 to

1. (α+ 1)-back for finite types: For all t′ ∈ TN there exists s′ ∈ TM with s′ ∼αL t′
and s′ =X s, where X = t′ ∩ t.

We want to emphasize that the back and forth conditions of our bisimulations do
not require the regarded assignments s′ or t′ to actually agree on any variables with
s or t respectively, i.e. s′ ∩ s and t′ ∩ t may be empty. The reason for this is that
LFD has the global modalities ∀= D∅ and ∃= E∅

2, and that we want bisimilarity
to correspond to logical equivalence. As an example, let V be finite and

ψ := ∃(Rx) ∧
∧
v∈V
¬Ev Rx.

Then M, s |= ψ means that there is some s′ ∈ TM with M, s′ |= Rx, but that there
is no s′′ in any =x-class of s with this property, and thus s′ ∩ s = ∅. Since LFD is
able to witness this s′, it is natural to require a bisimilar t′ ∈ TN for every s′ ∈ TM,
and not just for those s′ that agree with s on some variable. Likewise for the back
condition.
This forces every bisimulation to be global, meaning that every assignment in TM

is bisimilar to at least one assignment in TN, and vice versa. Likewise, it follows
directly from Definition 3.4 that for ordinals α, M, s ∼α+1 N, t entails a global α-
bisimulation, in the sense that each assignment is α-bisimilar to one in the other
team. For λ a limit ordinal, M, s ∼λ N, t entails that for all α < λ, every assignment
is α-bisimilar to one in the other team.
This is a common consequence of having global modalities; in the context of, say,
ML with an explicitly added global modality, often denoted ML(∀), the canonical
bisimulation is just the global version of ordinary ML-bisimulation.3

2We say that some modality is global if its corresponding accessibility relation is the all-relation,
i.e. contains all possible pairs of objects, as is the case for =∅ on teams.

3A good reference for this and similar results on bisimulations for modal logic over special
classes of frames is [14].
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Since we already defined bisimulation for infinite ordinals, the corresponding step
for our logics is to consider their infinitary variants.

Definition 3.6 (Infinitary LFD / LFD=). For an arbitrary type (τ, V ), define the
infinitary logic L∞(τ, V ) inductively by

1. L(τ, V ) ⊆ L∞(τ, V ).

2. If ϕ ∈ L∞(τ, V ), then ¬ϕ,DX ϕ ∈ L∞(τ, V ) for all finite X ⊆ V .

3. If Φ ⊆ L∞(τ, V ) is a set, then ∧Φ ∈ L∞(τ, V ).

The semantics of L extend to L∞ in an obvious way.

Definition 3.7 (Quantifier Rank). The quantifier rank qr(ϕ) of a formula ϕ ∈
LFD=

∞ is an ordinal defined recursively by

1. qr(ϕ) = 0 for atoms ϕ.

2. qr(¬ϕ) = qr(ϕ).

3. qr (∧i∈I ϕi) = supi∈I qr(ϕi).

4. qr(DX ϕ) = qr(ϕ) + 1.

Note that for finite conjunctions the supremum is just a maximum and hence all
non-infinitary formulae ϕ ∈ LFD= have a finite quantifier rank qr(ϕ) ∈ N.

The above definition of the quantifier rank does not capture the notion of “how
far a formula looks into the model”, starting at some assignment s, as one would
have for ML with Kripke semantics. For one part this is again because we have the
global modalities ∀and ∃available. Moreover, the truth of dependence atoms is
clearly influenced by other assignments than the one it is evaluated on, and hence
qr(DXy) = 0 also does not capture the mentioned idea. The reason we defined
the quantifier rank as above is that we treat all atoms equally in the definition of
bisimulation, so even 0-bisimilar assignments have to agree on dependence atoms.
This yields a correspondence of quantifier rank α and α-bisimilarity for all α ∈ Ord,
as shown below in our Ehrenfeucht-Fraïssé analogue Theorem 3.12.

Definition 3.8 (Logical equivalence). Consider pointed (τ, V ) dependence models
M, s and N, t.
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1. For a k ∈ N we say M, s and N, t are L-equivalent up to (quantifier) rank k if
for all ϕ ∈ L(τ, V ) with qr(ϕ) ≤ k:

M, s |= ϕ iff N, t |= ϕ.

In this case we write M, s ≡kL N, t.

2. L∞-equivalence up to rank α ∈ Ord is defined analogously.

3. The models are L-equivalent, written M, s ≡L N, t if we can drop the restric-
tion on the quantifier rank. Likewise for L∞.

Since all ϕ ∈ L have a finite quantifier rank, L-equivalence corresponds to L-
equivalence up to rank k for all k ∈ N. Furthermore, we usually write ≡∞L instead
of ≡L∞ in the case of unrestricted equivalence in the infinitary logic L∞.

Notice that 0-L-bisimilarity and L-equivalence up to rank 0 coincide, so we can state
the first requirement of L-bisimulation, namely agreement on atoms, as M, s ∼0

L N, t

or equivalently M, s ≡0
L N, t.

Definition 3.9. For ϕ, ψ ∈ L(τ, V ) we write ϕ ≡ ψ if

M, s |= ϕ iff M, s |= ψ, M, s ∈ DEP [τ, V ].

Equivalence of formulae in L∞(τ, V ) is defined analogously.

3.1 An Ehrenfeucht-Fraïssé Analogue

Given a logic, a common goal is to find a correspondence between logical indistin-
guishability and behavioural equivalence in some structural form, often as a relation
akin to bisimulation, a collection of partial isomorphisms, or a winning strategy of
certain two-player games. For FO we have back-and-forth systems and Ehrenfeucht-
Fraïssé games (cf. [25, Chapter 3.3]), whereas for ML one has ordinary bisimulation
and the corresponding bisimulation games (cf. [11, Chapter 2.2]). The following
results and in particular Theorem 3.12 show that the bisimulations defined above
fulfill such a role for LFD and LFD=. Again we let L denote either LFD or LFD=.

Lemma 3.10. Let (τ, V ) be a finite type. For all M, s ∈ DEP [τ, V ] and k ∈ N
there exists a formula χkM,s ∈ L(τ, V ) of quantifier rank k that defines the ∼kL-class
of M, s. More formally, we have for all N, t ∈ DEP [τ, V ] that

N, t |= χkM,s iff N, t ∼kL M, s.
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Moreover, up to L-equivalence, the number of such χkM,s depends only on τ, V and
k, and is always finite.

Proof. We construct χkM,s and prove the claims by induction on k ≥ 0. We require
(τ, V ) to be finite so that up to L-equivalence there are only finitely many formulae
ϕ ∈ L(τ, V ) with qr(ϕ) = 0, which allows us to define

χ0
M,s :=

∧
{ϕ ∈ L(τ, V ) | qr(ϕ) = 0, M, s |= ϕ}.

Clearly χ0
M,s has quantifier rank 0 and defines the ∼0

L-class of M, s. Furthermore,
the number of possible χ0

M,s only depends on τ , V and k = 0. Now assume we
proved the claim for k ∈ N. So the χkM,s define the ∼kL-class of M, s. Hence we can
express the (k+ 1)-back and (k+ 1)-forth conditions from Definition 3.4 in LFD via

ϕk+1
back :=

∧
X⊆V
X finite

DX

∨
s′∈TM
s′=Xs

χkM,s′

and ϕk+1
forth :=

∧
s′∈TM

∧
X⊆s′ ∩ s
X finite

EX χkM,s′ .

We set χk+1
M,s := ϕk+1

forth∧ϕk+1
back. By the induction hypothesis we know that qr(χkM,s) = k

and the number of different χkM,s depends only on τ, V and k. Thus we obtain by the
above definitions that qr(χk+1

M,s) = k + 1 and that the number of χk+1
M,s also depends

only on τ, V and k + 1. Since up to L-equivalence there are only finitely many
χkM,s, the conjunctions are essentially finite, so that χk+1

M,s is a well-defined formula
in L(τ, V ). Therefore

N, t |= χk+1
M,s iff N, t ∼k+1

L M, s,

which concludes the induction step. �

Lemma 3.11. Let (τ, V ) be an arbitrary type. For all M, s ∈ DEP [τ, V ] and
α ∈ Ord there exists a formula χαM,s ∈ L∞(τ, V ) of quantifier rank α that defines
the ∼αL-class of M, s. More formally, we have for all N, t ∈ DEP [τ, V ] that

N, t |= χαM,s iff N, t ∼αL M, s.

Proof. The proof is analogous to the one for the finite case. One proceeds by trans-
finite induction, first defining χ0

M,s as before and then χα+1
M,s exactly as before: we

simply replace k with α in the definition of χk+1
M,s above. For limit ordinals λ, set

χλM,s :=
∧
α<λ

χαM,s,
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which corresponds to definition of ∼λL, see Eq. (3.1) in Definition 3.4. �

Theorem 3.12 (Ehrenfeucht-Fraïssé and Karp theorems for LFD and LFD=).
Let L denote LFD or LFD=. For M, s and N, t of the same finite type it holds that

M, s ∼kL N, t iff M, s ≡kL N, t, k ∈ N.

As a consequence we obtain that under those same conditions

M, s ∼ωL N, t iff M, s ≡L N, t.

For arbitrary (i.e. not necessarily finite) types it holds that

M, s ∼αL N, t iff M, s ≡αL∞ N, t, α ∈ Ord

and therefore
M, s ∼L N, t iff M, s ≡∞L N, t.

Proof. Consider some finite type (τ, V ) and let M, s and N, t be (τ, V ) dependence
models. It was already mentioned that ∼0

L corresponds to ≡0
L. We proceed by

induction, and assume that the claimed correspondence between ∼kL and ≡kL has
already been shown for some k ∈ N.

1. “=⇒”: We assume M, s ∼k+1
L N, t and show M, s ≡k+1

L N, t.

A formula of quantifier rank k+1 is just a boolean combination of at least one
formula of the form DX ϕ with qr(ϕ) = k, and other formulae with quantifier
rank at most k. Since (k+1)-L-bisimilarity entails k-L-bisimilarity, the induc-
tion hypothesis yields M, s ≡kL N, t. So it suffices to show that M, s |= DX ϕ

iff N, t |= DX ϕ, for all (finite) X ⊆ V and ϕ ∈ L(τ, V ) of quantifier rank k.

To this end, suppose M, s |= DX ϕ for such an X and ϕ. We want to show
N, t |= DX ϕ. If t′ ∈ TN is an arbitrary assignment in the =X-class of t, then
by the (k + 1)-back condition there exists some s′ ∈ TM with

M, s′ ∼kL N, t′ and s′ =X s.

Since we assumed M, s |= DX ϕ, this implies M, s′ |= ϕ. By the induction
hypothesis we infer from M, s′ ∼kL N, t′ that

M, s′ ≡kL N, t′ and therefore N, t′ |= ϕ.

As t′ was an arbitrary assignment in the =X-class of t, we conclude that N, t |=
DX ϕ. The converse implication “N, t |= DX ϕ implies M, s |= DX ϕ” follows



24 CHAPTER 3. BISIMULATION

analogously, using the (k+1)-forth condition instead. By our above argument
we obtain that M, s ≡k+1

L N, t, and conclude that (k+1)-L-bisimilarity implies
L-equivalence up to rank k + 1.

2. “⇐=”: We assume that M, s ≡k+1
L N, t and show M, s ∼k+1

L N, t.
Since M, s satisfies its own characteristic formula of rank k + 1, we obtain

N, t |= χk+1
M,s which is equivalent to M, s ∼k+1

L N, t

by Lemma 3.10. Hence L-equivalence up to rank k + 1 implies (k + 1)-L-
bisimilarity.

This concludes the induction step and with that the proof of the first part of the
theorem; that in restriction to finite types (τ, V ), the concepts of k-L-bisimilarity
and L-equivalence up to rank k coincide, for every k ∈ N.
The second claim is an immediate consequence. We already mentioned in Defini-
tion 3.8 that in the case of finite types

M, s ≡L N, t iff M, s ≡kL N, t, k ∈ N.

We also know that M, s and N, t are ω-L-bisimilar iff they are k-L-bisimilar for all
k < ω, i.e. all k ∈ N. Thus it follows from the first claim that

M, s ∼ωL N, t iff M, s ≡L N, t.

The proof for the case of arbitrary types and L∞ is an easy adaption of the above
proof. For the sake of completeness, we give the details in Theorem C.3 in the
appendix. �

Corollary 3.13.

1. For finite types (τ, V ), if ϕ ∈ L(τ, V ) and k = qr(ϕ), then

ϕ ≡
∨

M,s |=ϕ

χkM,s,

where the disjunction ranges over all M, s ∈ DEP [τ, V ]. We know this is
a well-defined L-formula since Lemma 3.10 tells us that up to L-equivalence
there are only finitely many such χkM,s.

2. For arbitrary types (τ, V ), if ϕ ∈ L∞(τ, V ) and α = qr(ϕ), then

ϕ ≡
∨

M,s |=ϕ

χαM,s.
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Proof. We only prove the first claim, as the infinitary variant is analogous. Assume
M, s ∈ DEP [τ, V ] with M, s |= ϕ. Then χkM,s appears (up to L-equivalence) in the
disjunction on the right hand side, and hence M, s also models the disjunction.
Conversely, if M, s models the disjunction, then we must have M, s |= χkN,t for
some (τ, V ) dependence model N, t with N, t |= ϕ. Per Lemma 3.10 we obtain that
M, s ∼kL N, t, which by Theorem 3.12 corresponds to M, s ≡kL N, t. As qr(ϕ) = k,
it follows that M, s |= ϕ. �

3.2 Proving Undefinability via Bisimulation

The conditions for bisimulation are usually easy to check for models of small size.
Given a reasonable representation of the considered models, we can also let a com-
puter verify whether some relation is a bisimulation, or let it search for a bisimulation
between given models.4 Bisimulation can be used to show undefinability of some
property of (pointed) dependence models, by finding two such models that are bisim-
ilar but differ on said property. By Theorem 3.12, we then know that these models
are logically indistinguishable in LFD / LFD=, so the considered property cannot be
defined in the respective logic. In the following we give a few examples.

Example 3.14. Fact 2.12 (originally [6, Fact 7.2]) states that every dependence
model has an LFD-equivalent distinguished model, in which distinct variables take
disjoint sets of values. Although easy to see, we can now give a short proof. In [6,
Fact 7.2], given a (τ, V ) dependence model M with universe M , the authors define
a (τ, V ) dependence model Md with universe Md := V ×M , relations

RMd := {((x1,m1), . . . , (xar(R),mar(R))) | (m1, . . . ,mar(R)) ∈ RM}

and TMd := {sd | s ∈ TM} where sd(x) := (x, s(x)). It is easy to see that

Z := {(s, sd) | s ∈ TM}

is an LFD-bisimulation between M and Md as defined in Definition 3.1. Indeed,
per definition of the RMd we know that s and sd always agree on relational atoms.
Moreover, for all s′, s ∈ T and X ⊆ V it holds that

s′ =X s iff s′d =X sd.

Thus s and sd agree on dependence atoms as well, and the only choice one has

4See e.g. the python library written by the author, which was used to find and minimize most
of the examples in this thesis: https://git.rwth-aachen.de/philpuetzstueck/lfd-sat.

https://git.rwth-aachen.de/philpuetzstueck/lfd-sat
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during the back and forth clauses (each assignment is bisimilar to exactly one other)
always works out. Therefore we know by Theorem 3.12 that M, s ≡∞LFD Md, sd for
all s ∈ TM, which proves the claim.

Example 3.15. Consider the LFD=-sentence ψx⊆y defined in Lemma 2.14. If M |=
ψx⊆y, then for each s ∈ T := TM there is some assignment t ∈ T where t(y) = t(x) =
s(x). We proved that this represents a sufficient condition for T (x) ⊆ T (y). But it
is not necessary: consider the team

T = {(0, 1), (1, 0)}.

Here it is clear that T (x) = {0, 1} = T (y), but our formula ψx⊆y is not satisfied
in a model with this set of assignments. To prove that we cannot define an LFD=-
formula that precisely defines the inclusion T (x) ⊆ T (y), we can use Theorem 3.12.
It suffices to show this for τ = ∅ and V = {x, y}, because the example below can be
adapted accordingly, e.g. by letting all new relation symbols R ∈ τ be interpreted as
RM = RN = ∅, which guarantees that the bisimilar assignments below still agree on
all relational atoms. Moreover, letting variables apart from x, y be constant within
both teams ensures agreement on dependence atoms, and then it is also easy to
guarantee agreement on equality atoms.
Consider dependence models M,N of type (∅, {x, y}) with teams given by

TM := {(a, b), (b, a)} and TN := {(1, 2), (2, 0)}.

Note that TM(x) ⊆ TM(y), but TN(x) 6⊆ TN(y). Now let Z be the binary relation
on TM × TN defined by

(a, b) Z (1, 2) and (b, a) Z (2, 0).

It is easy to verify that Z is an LFD=-bisimulation and hence M, s ≡∞LFD= N, t by
Theorem 3.12, for all (s, t) ∈ Z. Indeed, note that ¬D∅x,¬D∅y,Dxy,Dyx and
x 6= y hold at all assignments in both teams, so the pairs of assignments are already
0-bisimilar. Furthermore, in both teams we see that the present two assignments
do not agree on any variables, so evidently the only choice we have at the back and
forth clauses always works out. We conclude that the inclusion T (x) ⊆ T (y) is not
LFD=

∞-definable.

This begs the question of what happens when we extend LFD with the ability to
define inclusion, e.g. with atoms x ⊆ y that have the semantics

M, s |= x ⊆ y iff TM(x) ⊆ TM(y).
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What can be said about this extension? Can the proof of undecidability for LFD=

be adapted?

Example 3.16 (LFD=-Undefinability of cartesian products). In the proof of unde-
cidability of LFD= we had to embedd a cartesian product into T (x, z) which included
all pairs that appear in the universal FO-quantification ∀x∀z of a smaller universe
(cf. Eq. (2.3) in the proof of Theorem 2.15). The fact that this suffices to embed
the Kahr-Class into LFD= is crucial, since it can be shown that LFD= cannot define
cartesian products; neither within relations, in the sense that

{(a, b) | ∃c : (a, b, c) ∈ RM} is a cartesian product,

nor within the team itself, in the sense that T (x, y) is cartesian. The counterexam-
ples can be found in the appendix; see Examples A.1 and A.2.

Unlike many logics with a notion of bisimulation, LFD is not invariant under disjoint
unions of bisimilar models, because of the atomD∅x which states that x is a constant
variable. Indeed, if x is constant in two dependence models with disjoint universes,
then clearly x will no longer be constant in their disjoint union. We will come
back to this in Section 4.2 where we compare LFD to the guarded fragment GF and
show that this fact is enough to prove that under reasonable assumptions towards
the first-order translation, LFD is not embeddable into such guarded fragments, see
Proposition 4.47. The following weaker proposition and corollary are still helpful in
demonstrating LFD’s inability to reason about quantities.

Proposition 3.17. Consider some distinguished dependence model M, s and a
copy M′ of M such that M and M′ are disjoint except for values which are taken
by a variable that is constant throughout the whole team. Then (M∪M′), s5 is still
distinguished, and M, s ∼LFD (M ∪M′), s.

Proof. The bisimulation relates each assignment in the original model with itself
and its copy, the latter two being in TM∪M′ . They key point is that if s ∈ TM and
t′ ∈ TM′ , then s =X t′ can only happen if all x ∈ X are constant within both teams.
The details can be found in Proposition A.3 in the appendix. �

It follows from this that except for trivial cases involving constant variables, LFD
cannot define upper bounds on the size of the universe or the number of values some
variable takes. The following corollary makes this precise.

5The union M ∪M′ has the universe M ∪M ′, relations RM ∪RM′ , and the team TM ∪ TM′ .
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Corollary 3.18. There does not exist an n ≥ 2 and a satisfiable ϕ ∈ LFD such
that for every pointed dependence model M, s with M, s |= ϕ we have |TM(x)| ≤ n,
except if ϕ already enforces |TM(x)| = 1, i.e. that x is constant.

Proof. Assume that such an n and ϕ exist where ϕ does not enforce |TM(x)| = 1.
Then there is some model M, s |= ϕ with team T such that |T (x)| ≥ 2. In particular
M, s |= ¬D∅x. By Example 3.14 we can assume without loss of generality that
M is distinguished (we can find a distinguished N, t with N, t ≡LFD M, s, and
hence N, t |= ϕ ∧ ¬D∅x as well). Applying Proposition 3.17 then yields a new
(still distinguished) model M1, s with team T 1 such that M1, s ∼LFD M, s and
|T 1(x)| = 2|T (x)|. From here we can define M2,M3, . . . inductively, and after
finitely many steps reach some Mk with |T k(x)| = 2k|T (x)| > n. But we also have
M, s ∼LFD M1, s ∼LFD · · · ∼LFD Mk, s, implying M, s ≡LFD Mk, s by Theorem 3.12
and hence Mk, s |= ϕ. Contradiction. �

Notice that this is stronger than the usual undefinability-statement. By this corol-
lary, LFD cannot even enforce such an upper bound to hold, i.e. that all models of ϕ
satisfy the upper bound, without requiring the converse implication. Lower bounds
can be defined though; for example, the sentence ∃(Rx) ∧ ∃(¬Rx) is satisfiable and
enforces |T (x)| ≥ 2.
Because we heavily relied on distinguishedness, these results can not be adapted to
LFD=. In fact, as an easy counterexample we have the following LFD=-sentence that
enforces |T (x)| ≤ n:

ϕn =
n∧
i=1

D∅xi ∧

∀

(
n∨
i=1

x = xi

)
.

As innocuous as Corollary 3.18 may seem, if it were not true, so for example we
could define some ϕ2 ∈ LFD which reasonably enforces |TM(x)| ≤ 2, then we would
already be able to define an infinity axiom for LFD and settle the question of whether
LFD has the finite model property (which, to the author’s best knowledge, is still
open at the point of writing this thesis). We formalize this later in Remark 6.4
and Proposition 6.5.

Fact 3.19. We can show that even LFD= cannot define non-trivial upper bounds
on the number of assignments in some =X-class that satisfy some relational atom.
By non-trivial we mean that X should be a proper subset of V (the =V class clearly
contains only 1 assignment) and that n ≥ 1. For the details, see Example A.4 in
the appendix.



Chapter 4

Comparison with other Logics

In this section we compare LFD with first-order logic, guarded fragments of first-
order logic, and logics with team semantics. From here on we will not concern
ourselves with infinitary logics, so we fix (τ, V ) to be a finite type, and v to be a
tuple enumerating the variables in V . Before we start with first-order translations
of LFD in the next subsection, we prove the following analogue of the well-known
Scott normal form for FO2.

Proposition 4.1 (Scott normal form for LFD). Let L denote either LFD or LFD=.
For ψ ∈ L(τ, V ) there is a vocabulary τ+ ⊇ τ and V + := V ] {c} for a fresh c so
that one can construct in polynomial time a formula ϕ ∈ L(τ+, V +) of the form

ϕ = α ∧

∀

β ∧
∧
j

∀

EXj
γj ∧

∧
k

∀(Rkv↔ DXk
yk) ∧ D∅c

such that the following holds:

1. α, β and all γj are of quantifier rank 0 and contain no dependence atoms,
i.e. they are boolean combinations of relations (and equalities if L = LFD=).

2. ϕ |= ψ, meaning M, s |= ϕ implies M, s |= ψ for all M, s ∈ DEP [τ+, V +].

3. For all M, s ∈ DEP [τ, V ] with M, s |= ψ, we can find an expansion M+, s+ to
the type (τ+, V +) such that M+, s+ |= ϕ.

The last two conditions guarantee that ψ and ϕ are satisfiable over the same uni-
verses. Also note that qr(ϕ) ≤ 2.

Proof. In the following, we will write ϕ  ψ if ϕ |= ψ ∧ D∅c and every model of
ψ can be expanded to a model of ϕ. Remember that EX ϕ = ¬DX ¬ϕ. We start
by ψ′ := ψ[D∅ 7→ Dc] ∧ D∅c, so ψ′ is the formula one obtains by replacing each
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occurrence of D∅ in ψ with Dc and adding the condition that c is constant. Clearly
ψ′  ψ, and ψ′ contains no dependence quantifiers DX (or EX) with X = ∅. This
transformation ψ 7→ ψ′ can clearly be done in polynomial time.
Choose for each dependence atomDXy occurring in ψ a fresh |V |-ary relation symbol
RX,y, and let ψ′[DXy 7→ RX,yv] be the formula obtained from ψ′ by replacing all
these DXy with their corresponding atoms RX,yv. Set

ϑ := ψ′[DXy 7→ RX,yv] ∧
∧

DXy in ψ

∀(RX,yv↔ DXy).

The attached global conditions for the RX,yv guarantee that ϑ  ψ′ and hence by
transitivity ϑ  ψ. Moreover, the number of dependence atoms in ψ is linearly
bounded in |ψ|, and so the above transformation ψ′ 7→ ϑ can be carried out in
polynomial time.
Now we iterate the following transformation until ϑ has the desired form. Choose
some subformula DX η of ϑ where X 6= ∅, qr(η) = 0, and η contains no dependence
atoms. This should not be one of the global conditions we attached at an earlier step,
and rather stem from a subformula of the original ψ. Let x be a tuple enumerating
X and R a fresh |X|-ary relation symbol. Define ϑ′ := ϑ[DX η 7→ Rx] by replacing
each occurrence of DX η in ϑ by Rx. Note that since Free(Rx) = X, the atom Rx
holds at an assignment s if and only if it holds at each assignment in the =X-class
of s. From this we obtain the equivalences

EX Rx ≡ Rx and ¬Rx ∨ DX η ≡ DX(¬Rx ∨ η).

Moreover, ∀DX ϕ
′ ≡

∀

ϕ′ for all ϕ′, ∀distributes over ∧, and EX distributes over ∨.
Hence

ϑ′ ∧

∀(Rx↔ DX η)
≡ ϑ′ ∧

∀(¬Rx ∨ DX η) ∧ ∀(¬DX η ∨Rx)
≡ ϑ′ ∧

∀

DX(¬Rx ∨ η) ∧ ∀(EX(¬η) ∨ EX Rx)
≡ ϑ′ ∧

∀

DX(Rx→ η) ∧ ∀

EX(η → Rx)
≡ ϑ′ ∧

∀(Rx→ η) ∧

∀

EX(η → Rx).

Call the last sentence ϑ′′. The above yields

ϑ′′ ≡ ϑ′ ∧

∀(Rx↔ DX η)  ϑ  ψ and thus ϑ′′  ψ.

Moreover, ϑ′′ is one step closer to our desired form, since ∀distributes over conjunc-
tion. Lastly it is again easy to see that a single such transformation ϑ 7→ ϑ′′ can be
carried out in polynomial time, and that we will only have to do polynomially many
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of these to reach our desired normal form ϕ. �

Remark 4.2. If we want the normal form to be a sentence, we can replace α by∃

α in ϕ. Since ∃α ≡ ∀∃

α, this would yield an L(τ+, V )-sentence ϕ′ of the form

ϕ′ = ∀

β ∧
∧
j

∀

EXj
γj ∧

∧
k

∀(Rkv↔ DXk
yk) ∧ D∅c

such that β and all γj have the same constraints as before and:

1. ϕ′ |= ∃

ψ.

2. For all M, s ∈ DEP [τ, V ] with M, s |= ψ we can find an expansion M+ to the
type (τ+, V +) such that M+ |= ϕ′.

Hence ψ and ϕ′ are still satisfiable over the same universes.

The reason we excluded dependence atoms from α, β and the γj is that they are
usually the most complex part of LFD to translate into other logics, as can be seen
in the examples of first-order translations discussed below. It should also become
clear over the course of this thesis that the dependence atoms are essentially the
only difference between LFD and propositional modal logic over a special class of
frames. We therefore believe that the normal form as stated above is easier to work
with as opposed to allowing dependence atoms to occur anywhere.

4.1 First-order translations

We give three examples of possible first-order translations of LFD. We start in Sec-
tion 4.1.1 by recalling the standard translation defined in [6, Section 3.2]. Then
in Section 4.1.2 we give a modal translation of LFD into FO2 with equivalence re-
lations, over a special class of structures based on the standard relational models
introduced in [6, Section 3.3]. A third example, given in Section 4.1.3, can be seen
as a combination of the previous two and translates LFD into two-sorted monadic
FO2 with unary functions, again over a certain class of structures.

4.1.1 The Standard Translation

We recall the standard translation as described in [6, Section 3.2], stating the transla-
tion of structures more explicitly and also defining the corresponding transformation
of the classical structures back to dependence models. Remember that (τ, V ) is a
finite type and v an enumeration of V . In this context, DEP [τ, V ] corresponds to
the following class of pointed classical structures.
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Definition 4.3 (The class DFO). Let JT K be a fresh |V |-ary relation symbol and
consider σ := τ ]{JT K}. For the rest of this subsection, this σ will be fixed together
with (τ, V ). Define

DFO[σ] := {A, a | A is a σ-structure and a ∈ JT KA}.

So we explicitly encode the team of a dependence model in the relation JT K, much
in the same way we think of teams when viewing them as a tables; each variable has
its own column and the rows correspond to assignments (cf. Example 2.3).

Definition 4.4. We have translations between these classes, which for lack of a
better name will be denoted as follows:

Tdep → dfo : DEP [τ, V ] → DFO[σ],
Tdfo → dep : DFO[σ] → DEP [τ, V ].

For a (τ, V ) dependence model M, s with underlying τ -structure M, let

JT KM := TM(v) and Tdep → dfo(M, s) := (M, JT KM), s(v)

so the corresponding first-order model of M is an expansion of M by a suitably
interpreted JT K. Conversely, for A, a ∈ DFO[σ] we set

T := {v 7→ b | b ∈ JT KA} and Tdfo → dep(A, a) := (A � τ, T ), (v 7→ a)

so we see that the corresponding dependence model of A is the reduct of A to τ ,
together with the team T obtained from JT KA. This shows that both translations
are well-defined and in fact inverses of each other:

Tdep → dfo ◦Tdfo → dep = id and Tdfo → dep ◦Tdep → dfo = id .

Instead of pointed σ-structures, we could also consider σ-structures with |V | extra
constant symbols, interpreted to represent the current assignment.

Definition 4.5 (The standard translation, [6, Definition 3.9]). The standard trans-
lation of formulae trst : LFD(τ, V )→ FO(σ) is given by:

1. trst(Rx) = Rx for R ∈ τ .

2. trst commutes with boolean connectives.1

1By this we mean that trst(¬ϕ) = ¬ trst(ϕ) and trst(ϕ ∧ ψ) = trst(ϕ) ∧ trst(ψ).
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3. trst(DX ϕ) = ∀z(JT Kv→ trst(ϕ)) where z is an enumeration of all variables in
V \X, so in particular [z] ⊆ [v].

4. trst(DXy) = ∀z∀z′((JT Kv ∧ JT Kv[z 7→ z′]) → y = y′) where z is as above,
z′ and y′ are fresh copies of z respectively y, and JT Kv[z 7→ z′] is the atom
obtained by replacing the variables z with z′ in JT Kv.

Note that although we require a fresh copy V ′ of the set of variables V for the
translation of the dependence atoms DXy, the fresh copies are never free in any
translated formula. Indeed, LFD-formulae ϕ always have the same free variables as
their translations trst(ϕ), cf. Definition 2.10. In particular we can write trst(ϕ)(v)
since the free variables of trst(ϕ) are always among [v] = V . This yields the intended
evaluation of the trst(ϕ) on the structures A, a ∈ DFO pointed by |V |-tuples.

Fact 4.6 ([6, Fact 3.10]). If ϕ ∈ LFD(τ, V ) and M, s ∈ DEP [τ, V ] then

M, s |= ϕ iff Tdep → dfo(M, s) |= trst(ϕ).

Similarly, if A, a is a pointed σ-structure in DFO[σ], then

A, a |= trst(ϕ) iff Tdfo → dep(A, a) |= ϕ.

Proof. The first claim follows from a straightforward induction on ϕ. For the second
claim, use the first and the fact that the translations are inverses of each other. �

From the fact that DFO is first-order axiomatizable (by JT Kv) and the standard
translation fixes the universe and preserves LFD in the above sense, it follows that
LFD inherits compactness and Löwenheim-Skolem properties from FO. Moreover,
since the translation is effective, the validities of LFD are recursively enumerable.
This was already remarked in [6, Corollary 3.11].

Remark 4.7. We mentioned in Section 2.2 (see also [6, Section 7.2]) that the
standard translation may easily be lifted to LFD=. Indeed, we can simply set
trst(x = y) = (x = y) and everything works out. Clearly the translation can also be
adapted to exist between LFD∞/LFD=

∞ and infinitary FO.

4.1.2 A Modal Translation

In [6, Section 3.3] the modal perspective of LFD is highlighted via so-called standard
relational models, and two LFD-preserving translations are given; from dependence
models to standard relational models and vice versa. We briefly recall these defini-
tions and introduce new notation to formalize the involved classes of structures. As a
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first-order correspondent to the standard relational models, we define a specific class
of structures that interpret a fixed set of binary relations as equivalence relations.
Over this class of structures, LFD-formulae are then translated into a fragment of
monadic FO2 with equivalence relations but without equality.

Definition 4.8 (Standard relational model, [6, Definition 3.12]). A (τ, V ) standard
relational model M = (W, (∼x)x∈V , ‖ • ‖) has a universe W , equivalence relations
∼x on W for x ∈ V , and a valuation ‖ • ‖ = ‖ • ‖M sending atoms Rx to a set
of states ‖Rx‖ ⊆ W , for R ∈ τ and fitting tuples x ∈ V ar(R). Auxiliary relations
∼X := ⋂

x∈X ∼x are introduced for X ⊆ V , where ∼∅ = W ×W is the all-relation.
We furthermore require the following condition:

if s ∈ ‖Rx‖ and s ∼[x] t, then also t ∈ ‖Rx‖. (4.1)

The class of (τ, V ) standard relational models is denoted by SRM[τ, V ].

Definition 4.9 (LFD-semantics on SRM, [6, Definition 3.13]). The semantics of
boolean connectives are as usual, together with

M, s |= Rx iff s ∈ ‖Rx‖M.
M, s |= DXy iff t ∼X s implies t ∼y s for all t ∈ W.

M, s |= DX ϕ iff M, t |= ϕ for all t ∈ W with t ∼X s.

So the idea is to consider assignments as our atomic objects and preserve the infor-
mation of “agreement on X” by the equivalences ∼X , which makes it clear why we
need to require the condition (4.1). Remember our discussion below Definition 2.8,
where we gave a first hint at the modal perspective of LFD; we noted that depen-
dence models induce a quasi-Kripke model which has the team as its universe, and
modalities DX and EX behaving respectively like � and ♦ in ML with the accessibil-
ity relations =X . The standard relational models formalize this idea, showing that
we can essentially get an “object-free” semantics for LFD. The correspondence to
dependence models is given in the following.

Definition 4.10 ([6, Fact 3.14, Definition 3.15]). We have the translations

Tdep → srm : DEP [τ, V ] → SRM[τ, V ],
Tsrm → dep : SRM[τ, V ] → DEP [τ, V ].

For a (τ, V ) dependence model M, s we define the valuation ‖ • ‖M by

‖Rx‖M := {s ∈ TM |M, s |= Rx}
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so the corresponding standard relational model of M, s is

Tdep → srm(M, s) := (TM, (=x)x∈V , ‖ • ‖M), s.

Conversely, given N , t = (W, (∼x)x∈V , ‖ • ‖N ) ∈ SRM[τ, V ] we define the distin-
guished (τ, V ) dependence model N, t∼ = Tsrm → dep(N , t) as having

1. universe N := {(x, [w]x) | w ∈ W,x ∈ V } where [w]x is the ∼x-class of w,

2. team TN := {w∼ | w ∈ W} with w∼(x) := (x, [w]x) for x ∈ V ,

3. and n-ary relations R ∈ τ interpreted as

RN := {((x1, [w]x1), . . . , (xn, [w]xn)) | (x1, . . . , xn) = x ∈ V n and w ∈ ‖Rx‖N}.

Note that Tdep → srm forgets about elements in the universe that are not taken as
values by any assignment, and Tsrm → dep maps elements that are in the same ∼V -
class to the same assignment.

Fact 4.11 ([6, Facts 3.14, 3.16]). If ϕ ∈ LFD(τ, V ) and M, s ∈ DEP [τ, V ] then

M, s |= ϕ iff Tdep → srm(M, s) |= ϕ.

Similarly, ifM, s ∈ SRM[τ, V ], then

M, s |= ϕ iff Tsrm → dep(M, s) |= ϕ.

Proof. Both claims follow from a straightforward induction on ϕ. �

In [29] the decidability and complexity of FO2 extended with equivalence relations
was considered. We want to translate LFD over standard relational models into a
fragment of such an extension of FO2. Adapting their notation we consider finite
relational vocabularies τ0 ] τeq where τeq is a set of distinguished binary relations;
usually τeq = {∼x | x ∈ V }. We denote the class of all (τ0 ] τeq)-structures that
interpret the relations in τeq as equivalences by EQ[τ0; τeq] and refer to them as
equivalence structures.

Definition 4.12 (The class EQD). Define the vocabulary σ := τ0 ] τeq with

τ0 := {Rx | R ∈ τ, x ∈ V ar(R)} and τeq := {∼x | x ∈ V }.

All Rx are monadic predicates and every ∼x is a binary relation. For the rest of
this subsection, this σ will be fixed together with (τ, V ). Similarly to the auxiliary
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relations ∼X for standard relational models we define auxiliary notation

s ∼X t :=
∧
x∈X

s ∼x t, X ⊆ V.

To obtain meaningful translations between standard relational models and equiva-
lence structures we need to preserve the special requirement (4.1) of the former sort.
Hence define the sentence

ψσ :=
∧

Rx∈τ0

∀s∀t((Rxs ∧ s ∼[x] t) → Rxt).

Finally the class of pointed equivalence structures corresponding to SRM[τ, V ] is

EQD[σ] := {A, s | A ∈ EQ[τ0; τeq], s ∈ A, A |= ψσ}.

Definition 4.13 (From SRM to EQD). We have the translations

Tsrm → eqd : SRM[τ, V ] → EQD[σ],
Teqd → srm : EQD[σ] → SRM[τ, V ].

Both will leave the universe, the point s, and the interpretation of the (∼x)x∈V
unchanged. Given M, s ∈ SRM[τ, V ], its translation A, s = Tsrm → eqd(M, s) is
then completely specified by

RA
x := ‖Rx‖M.

Conversely, if B, t ∈ EQD[σ], then N , t = Teqd → srm(B, t) has the valuation

‖Rx‖N := RB
x .

Since satisfaction of ψσ exactly corresponds to the requirement (4.1) of standard
relational models, it is easy to see that these translations are well-defined. Moreover,
they are inverses of each other:

Tsrm → eqd ◦Teqd → srm = id and Teqd → srm ◦Tsrm → eqd = id .

The modal translation of LFD-formulae is based on the standard translation of ML
into FO2.

Definition 4.14 (The modal translation). For fresh variables s and t, the modal
translation of formulae trmod : LFD(τ, V ) → FO(σ) is given by trmod(ϕ) = trs

mod(ϕ)
as well as

1. trs
mod(Rx) = Rxs for R ∈ τ .
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2. trs
mod commutes with boolean connectives.

3. trs
mod(DX ϕ) = ∀t(t ∼X s→ trt

mod(ϕ)).

4. trs
mod(DXy) = ∀t(t ∼X s→ t ∼y s).

Here trt
mod is defined as trs

mod with all s and t interchanged. Note that trmod(ϕ) ∈ FO2

has at most one free variable.

Fact 4.15. If ϕ ∈ LFD(τ, V ) andM, s ∈ SRM[τ, V ] then

M, s |= ϕ iff Tsrm → eqd(M, s) |= trmod(ϕ).

Similarly, if A, s ∈ EQD[σ], then

A, s |= trmod(ϕ) iff Teqd → srm(A, s) |= ϕ.

Proof. The first claim follows from a straightforward induction on ϕ. For the second
claim, use the first and the fact that the translations are inverses of each other. �

Remark 4.16. Composing the two translations discussed in this subsection yields

Tdep → eqd : DEP [τ, V ] → EQD[σ],
Teqd → dep : EQD[σ] → DEP [τ, V ],

which preserve LFD via trmod in an analogous fashion to Facts 4.11 and 4.15.

Now one might wonder why we would even consider the class of equivalence struc-
tures, and not just translate formulae from LFD to FO by tagging on a sentence
which states that all ∼x are equivalence relations. One reason is that it is quite con-
venient to be able to translate all considered structures in EQD back to dependence
models in DEP . In a larger class there would be structures on which translated
LFD-formulae have a well-defined semantics, but which cannot be transformed back
to the models we evaluate LFD over. Furthermore, when translating LFD-formulae
in the above fashion, we evidently only need two variables, landing in FO2. This
can be explained by the modal character of LFD; once our viewpoint changes from
one assignment to another via some modality DX or EX , we lose all information
about our initial position (except for X). On the other hand, stating transitivity
of a relation requires at least three variables. Now full FO3 is well-known to be
undecidable2, whereas for FO2 on equivalence structures there is a lot of literature
on the very fine line between decidability and undecidability and various complexity
results. For example, it was shown in [29] that

2For example, FO3 contains the Kahr-Class we introduced in Section 2.3.



38 CHAPTER 4. COMPARISON WITH OTHER LOGICS

1. FO2 with only a single equivalence relation still has the finite model property
(FMP), and its satisfiability problem is Nexptime-complete.

2. FO2 with two equivalence relations does not have the FMP any more, but is
still decidable in 3-Nexptime. A lower bound of 2-Nexptime is shown in
[28].

3. FO2 with three equivalences is already undecidable.

The last point actually holds already for a much smaller fragment of FO2:

Theorem 4.17 ([29, Corollary 28]). Satisfiability and finite satisfiability on the class
of structures with three equivalence relations E1, E2, E3 are undecidable even for
the following fragment of FO2 in vocabularies τ0 consisting only of unary predicates:
conjunctions of sentences of the form

1. ∀x∀y(Eixy → χ(x, y)), and

2. ∀x(α(x)→ ∃y(Eixy ∧ α′(y))),

for quantifier-free and equality-free formulae χ and α and α′. This fragment is in
particular contained in the two-variable fragment of GF.3

Interestingly enough, our translation Tdep → eqd yields equivalence structures whose
number of equivalence relations corresponds to the number of variables in the depen-
dence model (|τeq| = |V |), i.e. the number of equivalences we consider is unbounded.
In view of the above result it seems quite remarkable that LFD is decidable.
So we know that the fragment outlined in Theorem 4.17 cannot be contained within
the fragment one obtains via trmod. Indeed, sentences of the first type ∀x∀y(Eixy →
χ(x, y)) contain formulae χ(x, y) that may be arbitrary relational formulae of two
free variables. Since in the context of the modal translation, variables represent
assignments, this would correspond to having access to all relational facts of two
distinct assignments at the same time. This is not possible in LFD; there is a
single current assignment, and we may change it via modalities DX or EX , but once
changed, we lose all information about the original assignment (apart from the LFD-
facts about the values of X). This also becomes apparent when we adapt our normal
form from Proposition 4.1 to the current situation:

Lemma 4.18. Let ψ ∈ LFD(τ, V ) and ϕ ∈ LFD(τ+, V +) be its normal form as
defined in Proposition 4.1. Define σ+ for (τ+, V +) as σ for (τ, V ) in Definition 4.12.
Remember that V + = V ] {c} for some fresh variable c. Then

3We introduce the guarded fragment GF in Section 4.2.
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1. σ ⊆ σ+.

2. trmod(ϕ) with free variable s has the form

trmod(ϕ)(s) = α(s) ∧ ∀sβ(s)
∧
∧
j

∀s∃t(t ∼Xj
s ∧ γj(t))

∧
∧
k

∀s(Rks↔ ∀t(t ∼Xk
s→ t ∼yk

s))

∧∀t(t ∼c s),

where α, β and the γj are boolean combinations of monadic relations.

3. trmod(ϕ) |= trmod(ψ∧D∅c) over EQD, meaning A, s |= trmod(ϕ) implies A, s |=
trmod(ψ ∧D∅c) for all A, s ∈ EQD[σ+].

4. For all A, s ∈ EQD[σ] with A, s |= trmod(ψ) we can find an expansion A+ of A
to the vocabulary σ+ such that A+, s ∈ EQD[σ+] and A+, s |= trmod(ϕ).

5. In particular, trmod(ψ) and trmod(ϕ) are satisfiable over the same universes of
structures in EQD.

Proof. Most points follow immediately from Proposition 4.1, Definitions 4.12 and 4.14,
and Remark 4.16. For (4.), let M, s∼ = Teqd → dep(A, s). If A, s |= trmod(ψ), then
M, s∼ |= ψ, and hence we can extend M, s∼ to M+, s+ of type (τ+, V +) such that
M+, s+ |= ϕ. From the way we defined Teqd → dep it is clear that we can find a cor-
responding extension A+ of A to the vocabulary σ+ such that Teqd → dep(A+, s) =
M+, s+, and hence A+, s |= trmod(ϕ). Indeed, σ+\σ contains only monadic relations
Rx for R ∈ τ+ \ τ , together with the new binary relation ∼c, which we interpret to
be the all-relation, since c is constant in M+. �

This gives a normal form for the set of translated LFD-formulae. Inspecting the form
of trmod(ϕ) above, we see that arbitrary relational formulae of the form χ(s, t) never
occur. Essentially, the only way in which subformulae of the form χ(s, t) occur is
when χ(s, t) = ϑ(s, t) ∧ γ(t) where ϑ is a boolean combination of formulae of the
form s ∼x t, and γ evidently only has one free variable. We will come back to this
at the end of Section 4.2, where we compare the expressive power of LFD and to
that of guarded fragments of FO.

4.1.3 A Functional Translation

Another view of LFD combines the two previous perspectives by considering two-
sorted structures, with one sort being assignments and the other one being their
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values. Variables x ∈ V are then viewed as functions fx from assignments to values.
The role of the =x (or the equivalence relations ∼x in the modal context) is then
taken by agreement under fx.

Definition 4.19 (The class FUN ). Define σ := τ0 ] τfun ] {JT K} with

τ0 := {Rx | R ∈ τ, x ∈ V ar(R)} and τfun := {fx | x ∈ V }

where all the fx are unary functions, JT K is a monadic predicate used to distinguish
the two sorts, and τ0 contains only monadic relations. Hence τ0 is the exact same
as defined for EQD in Definition 4.12. For the rest of this subsection, this σ will
be fixed together with (τ, V ). Similarly to the auxiliary notation ∼X of the modal
translation we will use the notation

fX(s) = fX(t) :=
∧
x∈X

fx(s) = fx(t), X ⊆ V.

Since assignments are now viewed as plain objects, we need to give the new way
of stating agreement on variables its meaning, i.e. we adapt the sentence ψσ from
Definition 4.12 to the vocabulary σ used here:

ψσ :=
∧

Rx∈τ0

∀s∀t((Rxs ∧ f[x](s) = f[x](t)) → Rxt).

Now the class corresponding to DEP [τ, V ] in the current setting is simply the class
of models of ψσ, pointed by elements in the respective interpretation of JT K:

FUN [σ] := {A, s | A is a σ-structure, s ∈ JT KA, and A |= ψσ}.

Definition 4.20 (From DEP to FUN ). We have the translations

Tdep → fun : DEP [τ, V ] → FUN [σ],
Tfun → dep : FUN [σ] → DEP [τ, V ].

Given M, s ∈ DEP [τ, V ] with universe M , its translation A, s = Tdep → fun(M, s)
has universe A := TM ]M and is specified by JT KA := TM,

RA
x := {s′ ∈ TM |M, s′ |= Rx},

as well as fA
x (s′) := s′(x) for all assignments s′ ∈ TM and fA

x (m) := m for all other
objects m ∈ M . Conversely, given B, t ∈ FUN [σ] we define the distinguished
dependence model N, t∼ = Tfun → dep(B, t) as having

1. the universe N := {(x, [s]x) | s ∈ JT KB, x ∈ V } where [s]x is the equivalence
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class of s w.r.t. agreement under fB
x , so [s]x := {s′ ∈ JT KB | fB

x (s) = fB
x (s′)}.

2. the team TN := {s∼ | s ∈ JT KB} where s∼(x) := (x, [s]x) for x ∈ V .

3. and n-ary relations R ∈ τ interpreted as

RN := {((x1, [s]x1), . . . , (xn, [s]xn)) | (x1, . . . , xn) = x ∈ V n and s ∈ RB
x }.

The modal translation trmod is easily adapted to the current situation; we need
to restrict quantification to the assignments (objects in JT K) and instead of the
equivalences ∼x use our functions fx to compare assignments.

Definition 4.21 (The functional translation). For fresh variables s and t, the func-
tional translation of formulae trfun : LFD(τ, V ) → FO(σ) is given by trfun(ϕ) =
trsfun(ϕ) as well as

1. trsfun(Rx) = Rxs for R ∈ τ .

2. trsfun commutes with boolean connectives.

3. trsfun(DX ϕ) = ∀t((JT Kt ∧ fX(t) = fX(s)) → trtfun(ϕ)).

4. trsfun(DXy) = ∀t((JT Kt ∧ fX(t) = fX(s)) → fy(t) = fy(s)).

Here trtfun is defined as trsfun with all s and t interchanged. Note that trfun(ϕ) ∈ FO2

has at most one free variable.

Fact 4.22. If ϕ ∈ LFD(τ, V ) and M, s ∈ DEP [τ, V ] then

M, s |= ϕ iff Tdep → fun(M, s) |= trfun(ϕ).

Similarly, if A, s is a pointed σ-structure in FUN [σ], then

A, s |= trfun(ϕ) iff Tfun → dep(A, s) |= ϕ.

Proof. Both claims follow from a straightforward induction on ϕ, analogously to
Fact 4.11. �

4.1.4 General First-Order Translations

With the three example translations of Sections 4.1.1 to 4.1.3 in mind, we will now
distill their essence to define reasonable first-order translations of LFD in general.
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Definition 4.23 (Good first-order translation of LFD). Given a finite type (τ, V ),
assume we have

1. some n ∈ N and new finite signature σ.

2. an FO(σ)-definable class of (pointed) σ-structures

C[σ] := {A, a | A is a σ-structure, a an n-tuple in A, and A |= Θ(a)}.

for some fixed set Θ(x) of formulae ϕ(x) ∈ FO(σ).

3. translations between the classes

F : DEP [τ, V ]→ C[σ] and G : C[σ]→ DEP [τ, V ].

If G(A, a) = M, s, then we want M to only depend on A, and not on a. We
write G(A) := M. Similarly, if A is clear from context, we just write G(a), so

G(A, a) = G(A),G(a).

Likewise for F. For A, a ∈ C[σ], we define

Team(A) := {b ∈ An | A,b ∈ C[σ]} = {b ∈ An | A |= Θ(b)}.

From the above, we see that G induces a map G : Team(A) → TG(A). We
require this to be surjective for every fixed A, a ∈ C[σ]. We do not need an
analogous requirement for F.

4. a translation of formulae

tr : LFD(τ, V )→ FO(σ)

that commutes with boolean connectives and produces formulae with at most
n free variables (so that we can evaluate translated formulae on the structures
of C[σ] that are pointed by n-tuples). Furthermore, we require that for every
ϕ ∈ LFD(τ, V ) and M, s ∈ DEP [τ, V ] we have

M, s |= ϕ iff F(M, s) |= tr(ϕ)

and dually for all A, a ∈ C[σ] it holds that

A, a |= tr(ϕ) iff G(A, a) |= ϕ.

5. for every X ⊆ V a formula ϑX(x,y) ∈ FO(σ) with the interpretation that for
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all structures A, a ∈ C[σ] and n-tuples b, c in A

A |= ϑX(b, c) iff b, c ∈ Team(A) and G(b) =X G(c).

Then we say that (C[σ],F,G, tr, (ϑX)X⊆V ) is a good translation of LFD overDEP [τ, V ]
to FO over C[σ].

Again we could just as well use constants instead of considering pointed structures.
A consequence of requiring the existence of a “back”-translation G is that good
translations yield a reduction for the satisfiability problem in the following sense.

Fact 4.24. Let (C[σ],F,G, tr, (ϑX)X⊆V ) be a good translation of LFD overDEP [τ, V ]
to FO over C[σ]. Then ϕ is satisfiable over DEP [τ, V ] if and only if tr(ϕ) is satisfiable
over C[σ].

Another assumption could be that G and F preserve finite models, so that a finite
model property of the first-order fragment corresponding to LFD over C would imme-
diately yield a finite model property of LFD; we come back to this in Fact 6.3. Now
we verify that the three previously discussed translations of Sections 4.1.1 to 4.1.3
are good in the sense of the above definition.

Example 4.25 (The standard translation is good). Remember that v denotes a fixed
enumeration of V . Let v′ be a fresh copy of v. In the setting of Definition 4.23, the
standard translation is specified by

1. n = |V | and σ = τ ] {JT K} where JT K is an n-ary relation symbol,

2. Θ(v) = {JT Kv}, hence C[σ] = DFO[σ],

3. F = Tdep → dfo and G = Tdfo → dep,

4. tr = trst,

5. ϑX(v,v′) = JT Kv ∧ JT Kv′ ∧ ∧v∈X v = v′.

It now follows from Definitions 4.3 to 4.5 and Fact 4.6 that all requirements for this
to be a good translation are met.

Example 4.26 (The modal translation is good). In the setting of Definition 4.23,
the modal translation is specified by

1. n = 1 and σ = τ0 ] τeq as defined in Definition 4.12,

2. Θ(s) = {ψσ} ∪ {“∼v is an equivalence relation” | v ∈ V }, so C[σ] = EQD[σ],
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3. F = Tdep → eqd and G = Teqd → dep,

4. tr = trmod,

5. ϑX(s, t) = s ∼X t = ∧
x∈X s ∼x t.

It now follows from Fact 4.11, Definitions 4.12 to 4.14, Fact 4.15, and Remark 4.16
that all requirements for this to be a good translation are met.

Example 4.27 (The functional translation is good). In the setting of Definition 4.23,
the functional translation is specified by

1. n = 1 and σ = τ0 ] τfun ] {JT K} as defined in Definition 4.19, with JT K being
a monadic predicate,

2. Θ(s) = {ψσ, JT Ks}, so C[σ] = FUN [σ],

3. F = Tdep → fun and G = Tfun → dep,

4. tr = trfun,

5. ϑX(s, t) = JT Ks ∧ JT Kt ∧ (fX(s) = fX(t))
= JT Ks ∧ JT Kt ∧

∧
x∈X

(fx(s) = fx(t)).

It now follows from Definitions 4.19 to 4.21 and Fact 4.22 that all requirements for
this to be a good translation are met.

Remark 4.28. Because of the way we defined the standard and functional trans-
lations, we can adapt our Scott normal form Proposition 4.1 to them in the same
way we did for the modal translation in Lemma 4.18, although we will not go into
the details here.

For our expressive completeness result in the next subsection we need to transfer
some rudimentary logical notions of LFD via our good translations. Henceforth, until
the end of this subsection, we fix some good translation (C[σ],F,G, tr, (ϑX)X⊆V ) of
LFD over DEP [τ, V ] to FO over C[σ]. Note that (τ, V ) must be finite.

Definition 4.29 (LFD-theory and LFD-equivalence). Define the rank-k LFD-theory
of A, a ∈ C[σ] as the set of translated LFD(τ, V ) formulae of quantifier rank at most
k that are satisfied in A, a, so for k ∈ N

ThkLFD(A, a) := {tr(ϕ) | ϕ ∈ LFD(τ, V ), qr(ϕ) ≤ k, A, a |= tr(ϕ)},
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as well as ThLFD(A, a) without the quantifier restriction. Furthermore, let

A, a ≡kLFD B,b iff ThkLFD(A, a) = ThkLFD(B,b).

Note that A, a and B,b have the same rank-k LFD-theory iff their corresponding
dependence models are LFD-equivalent up to rank k:

A, a ≡kLFD B,b iff G(A, a) ≡kLFD G(B,b).

Likewise M, s ≡kLFD N, t iff F(M, s) ≡kLFD F(N, t) for all (τ, V ) dependence models
M, s and N, t. We make analogous definitions and observations for ≡LFD.

Notation 4.30. Let ϕ, ψ ∈ FO(σ) and Ψ ⊆ FO(σ).

• We write ϕ ≡C ψ if ϕ and ψ are equivalent over C[σ], meaning that for all
A, a ∈ C[σ] we have A, a |= ϕ iff A, a |= ψ.

• Similarly, we write Ψ |=C ψ for entailment restricted to C[σ], namely that for
all A, a ∈ C[σ] with A, a |= Ψ we have A, a |= ψ.

We adapt our notion of bisimulation and its approximations as defined in Defini-
tions 3.1 and 3.4 to the class C[σ] as follows.

Definition 4.31 (Translated bisimulation). We define bisimulation between two σ-
structures A,B in C[σ] as a binary relation Z ⊆ Team(A)×Team(B) such that for
all (a,b) ∈ Z we have

• A, a ≡0
LFD B,b.

• (back) For all b′ ∈ Team(B) and (finite) X ⊆ V with B |= ϑX(b′,b), there is
an a′ ∈ Team(A) with (a′,b′) ∈ Z and A |= ϑX(a′, a).

• (forth) For all a′ ∈ Team(A) and (finite) X ⊆ V with A |= ϑX(a′, a), there is
a b′ ∈ Team(B) with (a′,b′) ∈ Z and B |= ϑX(b′,b).

We write A, a ∼ B,b if there is a bisimulation Z between A and B with (a,b) ∈ Z.

Definition 4.32. We write A, a ∼0 B,b if A, a ≡0
LFD B,b. Now let k ∈ N. For

A, a ∼k+1 B,b we require

• (k + 1)-back: For all b′ ∈ Team(B) and (finite) X ⊆ V with B |= ϑX(b′,b)
there is an a′ ∈ Team(A) with A, a′ ∼k B,b′ and A |= ϑX(a′, a).

• (k + 1)-forth: For all a′ ∈ Team(A) and (finite) X ⊆ V with A |= ϑX(a′, a)
there is a b′ ∈ Team(B) with A, a′ ∼k B,b′ and B |= ϑX(b′,b).
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Finally, we also say that A, a ∼ω B,b iff A, a ∼k B,b for all k ∈ N.

Since we only deal with LFD in the current setting, we will use ∼ instead of ∼LFD for
dependence models and LFD-bisimulation will just be called bisimulation. The main
reason for the requirement that G induces a surjection G : Team(A)� TG(A) for every
fixed A, a ∈ C[σ], is that we thereby obtain the following correspondence, which one
may also view as a justification for the definition of translated bisimulations.

Proposition 4.33. For k ∈ N

A, a ∼k B,b iff G(A, a) ∼k G(B,b),

as well as A, a ∼ B,b iff G(A, a) ∼ G(B,b).

Proof. See Proposition C.4 in the appendix. �

Remark 4.34. Considering Definition 4.29, our Ehrenfeucht-Fraïssé analogue The-
orem 3.12 carries over for finite types: for k ∈ N

A, a ∼k B,b iff G(A, a) ∼k G(B,b)
iff G(A, a) ≡kLFD G(B,b)
iff A, a ≡kLFD B,b.

In particular, A, a ∼ω B,b iff A, a ≡LFD B,b.

Remark 4.35. Using the above correspondence, we have for k ∈ N

M, s ∼k N, t iff M, s ≡kLFD N, t

iff F(M, s) ≡kLFD F(N, t)
iff F(M, s) ∼k F(N, t).

A correspondence for full bisimulation analogous to Proposition 4.33 seems to require
that F, analogously to G, induces a surjection F : TM � Team(F(M)) for every fixed
M, s ∈ DEP [τ, V ]. We did not assume this in the definition of our good translations,
because we do not need this correspondence for the proof of our main theorems. Note
though that our three discussed example translations fulfill this requirement.

Remark 4.36. We can adapt the characteristic formulae from Lemma 3.10 by
defining that for any k ∈ N

χkA,a := tr(χkG(A,a)), A, a ∈ C[σ].
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By Proposition 4.33 and Lemma 3.10 we obtain that for (A, a), (B,b) ∈ C[σ]

B,b |= χkA,a iff B,b ∼k A, a.

4.1.5 A Characterisation Theorem

In this subsection we will prove a characterisation theorem for good first-order trans-
lations of LFD with respect to their translated bisimulations. The theorem is an
analogue of van Benthem’s Theorem, which states that ML, via its standard trans-
lation into FO, is precisely the bisimulation-invariant fragment of FO over the class
of pointed Kripke structures. It was first formulated in [7] and [8]. We adapt a well
known proof using saturated structures by mainly following the exposition in [11,
Chapter 2.6]. First, we briefly recall some standard model-theoretic notions.

Definition 4.37. Let σ be a signature and A a σ-structure with universe A.

1. The theory Th(A) of A is the set of all FO(σ) sentences satisfied in A.

2. A substructure B ⊆ A is called an elementary substructure of A, or equiva-
lently A an elementary extension of B, denoted B � A, if for all ϕ(x) ∈ FO(σ)

B |= ϕ(b) iff A |= ϕ(b), for all fitting tuples b in B.

3. For a set B ⊆ A we let AB be the expansion of A by constants cb for each
b ∈ B which are interpreted as cAb := b. We also write τ ∪B for this signature.

4. An n-type of A over B ⊆ A is a set p(x) of formulae ϕ(x1, . . . , xn) ∈ FO(τ ∪B)
such that p ∪ Th(AB) is satisfiable. We call B the set of parameters for p.

5. We say A is ω-saturated if every type p(x) of A with finitely many parameters
is realized in A, i.e. there is some tuple a in A with A |= p(a).

Theorem 4.38. Every structure has an ω-saturated elementary extension.

Proof. See [13, Chapter 5] or [25, Chapter 8]. �

Lemma 4.39. Let (τ, V ) be a finite type and (C[σ],F,G, tr, (ϑX)X⊆V ) a good trans-
lation from LFD over DEP [τ, V ] to FO over C[σ]. Assume C[σ] contains two (pointed)
ω-saturated models A, a and B,b. If A, a ∼ω B,b, then already A, a ∼ B,b.

Proof. Let A, a and B,b be as described above, and assume that A, a ∼ω B,b.
Define

Z := {(s, t) ∈ Team(A)× Team(B) | A, s ≡LFD B, t}.
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By Remark 4.34 we have (a,b) ∈ Z. We now show that Z is a bisimulation according
to Definition 4.31, so let (s, t) ∈ Z. Clearly A, s ≡0

LFD B, t. We proceed by checking
the forth condition.
Let s′ ∈ Team(A) and X ⊆ V with A |= ϑX(s′, s). Set

p(x) := {ϑX(x, t)} ∪ ThLFD(A, s′).

We want to show that p is a type of B over [t], i.e. that p together with the first-
order theory of B[t] is satisfiable. Assume this is not the case, so by compactness
there exists a finite Φ0 ⊆ ThLFD(A, s′) with B, t |= ϕ, where

ϕ(x) := ∀t′(ϑX(t′,x)→ ¬
∧

Φ0(t′)).

Per definition of ThLFD, we know that there is some finite Ψ0 ⊆ LFD such that
Φ0 = {tr(ψ) | ψ ∈ Ψ0}. Since tr commutes with boolean connectives, it follows that
¬∧Φ0 = tr (¬∧Ψ0). Now ϕ is equivalent (over C[σ]) to the translation of the LFD-
formula DX ¬

∧Ψ0. Indeed, for an arbitrary C, c ∈ C[σ], we know that G induces a
surjection of Team(C) onto TG(C), so we get

C, c |= ϕ

iff for all t′ ∈ Team(C) with C |= ϑX(t′, c) we have C, t′ |= ¬
∧

Φ0

iff for all t′ ∈ Team(C) with G(t′) =X G(c) we have G(C, t′) |= ¬
∧

Ψ0

iff for all t′ ∈ TG(C) with t′ =X G(c) we have G(C), t′ |= ¬
∧

Ψ0

iff G(C, c) |= DX ¬
∧

Ψ0

iff C, c |= tr
(
DX ¬

∧
Ψ0
)
.

Since A, s ≡LFD B, t and B, t |= ϕ, we therefore obtain A, s |= ϕ. In particular
A, s′ |= ¬∧Φ0, which contradicts Φ0 ⊆ ThLFD(A, s′).
Thus p is a type with finitely many parameters (namely [t]) over B. By ω-saturated-
ness we obtain some t′ in B with B |= p(t′). It follows that B |= ϑX(t′, t) and
(s′, t′) ∈ Z, which proves the forth condition. The back condition is shown analo-
gously. We conclude that Z is a bisimulation and hence A, a ∼ B,b. �

Theorem 4.40 (Expressive Completeness). Let (τ, V ) be a finite type and consider
a good translation (C[σ],F,G, tr, (ϑX)X⊆V ) of LFD over DEP [τ, V ] to FO over C[σ].
For any ϕ ∈ FO(σ) the following are equivalent

1. ϕ is bisimulation-invariant over C[σ], i.e. for all (A, a), (B,b) ∈ C[σ] we have

A, a ∼ B,b =⇒ A, a |= ϕ iff B,b |= ϕ.
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2. ϕ is equivalent to an LFD-formula over C[σ], so there is a ψ ∈ LFD with

A, a |= ϕ iff A, a |= tr(ψ), A, a ∈ C[σ].

Hence we write
FO/∼ ≡ LFD over C[σ] via tr.

Proof. We know from Remark 4.34 that A, a ∼ B,b entails A, a ≡LFD B,b. Hence
the implication “(2) ⇒ (1)” is clear.
For the converse, let Θ ⊆ FO(σ) be the set of formulae that defines C[σ], as required
in Definition 4.23. Recall the notation ≡C and |=C from Notation 4.30. Note that
Ψ |=C ψ if and only if Θ ∪Ψ |= ψ.
Now assume (1), that ϕ is bisimulation-invariant over C[σ], and consider the set of
LFD-consequences of ϕ over C:

C(ϕ) := {tr(ψ) | ψ ∈ LFD(τ, V ) and ϕ |=C tr(ψ)}.

We claim that it suffices to show C(ϕ) |=C ϕ. Indeed, using compactness this yields
a finite subset C0 ⊆ C(ϕ) with C0 |=C ϕ and therefore ∧C0 ≡C ϕ. But then we can
write C0 = {tr(ψ1), . . . , tr(ψm)} for ψk ∈ LFD and come to the conclusion

ϕ ≡C
∧
C0 = tr

(
m∧
k=1

ψk

)

which shows that ϕ is equivalent to an LFD-formula over C[σ], so we are done.
Thus we only need to prove C(ϕ) |=C ϕ. If C(ϕ) is unsatisfiable over C[σ], this holds
vacuously. Hence let A, a ∈ C[σ] with A, a |= C(ϕ), so we need to show A, a |= ϕ.
We claim that ThLFD(A, a) ∪ {ϕ} is satisfiable over C[σ]. Otherwise, compactness
gives us some finite Φ0 ⊆ ThLFD(A, a) such that Θ ∪ Φ0 ∪ {ϕ} is unsatisfiable,
meaning

Θ ∪ {ϕ} |= ¬
∧

Φ0 and thus ϕ |=C ¬
∧

Φ0.

But then ¬∧Φ0 is an LFD-consequence of ϕ and hence contained in C(ϕ). This
contradicts A, a |= C(ϕ) and Φ0 ⊆ ThLFD(A, a).
Therefore ThLFD(A, a) ∪ {ϕ} has some model B,b ∈ C[σ]. Note that B,b |=
ThLFD(A, a) implies A, a ≡LFD B,b. Now take ω-saturated elementary extensions
A � A+ andB � B+. By elementary extension we have A+, a |= Θ, so A+, a ∈ C[σ],
as well as A+, a ≡LFD A, a; likewise for B+,b. It follows that

A+, a ≡LFD A, a ≡LFD B,b ≡LFD B+,b.

The Ehrenfeucht-Fraïssé correspondence from Remark 4.34 yields A+, a ∼ω B+,b.
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But now we can apply Lemma 4.39 to find A+, a ∼ B+,b. The following diagram
depicts the current situation.

A, a B,b

� �

A+, a ∼ B+,b

We know ϕ is bisimulation-invariant over C[σ]. Moreover, as ϕ ∈ FO, it is also invari-
ant under passage to elementary extensions and substructures. Based on B,b |= ϕ

we can then conclude A, a |= ϕ via diagram chasing. With this we inferred A, a |= ϕ

from A, a |= C(ϕ) for an arbitrary A, a ∈ C[σ], which shows that C(ϕ) |=C ϕ. We
discussed above how this concludes the proof of the theorem. �

Remark 4.41. In the setting of this theorem, if ϕ is bisimulation-invariant over
C[σ], it is already invariant under k-bisimulation over C[σ] for some k ∈ N. Indeed,
just take k to be the quantifier rank of an LFD-formula to which ϕ is equivalent over
C[σ]. As a consequence, we obtain an analogue of Corollary 3.13, namely that

ϕ ≡C
∨

A,a |=ϕ

χkA,a = tr
( ∨

A,a|=ϕ
χkG(A,a)

)
,

where the disjunctions range over all A, a ∈ C[σ], but are essentially finite, since
up to LFD-equivalence there are only finitely many such characteristic formulae, see
Lemma 3.10 and Remark 4.36.

The three translations we discussed in Sections 4.1.1 to 4.1.3 work the same for all
finite types (τ, V ) and corresponding σ. In this case, we write

FO/∼ ≡ LFD over C via tr.

Note though that for different good translations the adapted notions of bisimulation
as defined in Definition 4.31 are also formally different. Although we use the same
symbol∼ for all of them, it should always be clear from the context which translation
and corresponding notion of bisimulation we are referring to. In particular, the
relations ∼ in the three points of the following corollary are not the same relations,
and depend on which translation tr and class of structures C we consider.

Corollary 4.42. Applying Theorem 4.40 to the three translations we discussed in
Sections 4.1.1 to 4.1.3 (or Examples 4.25 to 4.27 for short), we obtain

1. FO/∼ ≡ LFD over DFO via the standard translation trst.
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2. FO/∼ ≡ FO2/∼ ≡ LFD over EQD via the modal translation trmod, since it
embeds LFD into FO2.

3. FO/∼ ≡ FO2/∼ ≡ LFD over FUN via the functional translation trfun, since it
also embeds LFD into FO2.

Remark 4.43. Remember that the standard translation can easily be extended to
LFD=. In this case, one can create an analogue of Section 4.1.4 for LFD=. Then,
the theorems of this section hold with minimally adapted proofs, since the equality
atoms are simply hidden in the “agreement on atoms” condition for bisimulation.
Denote the adapted LFD=-bisimulation by ∼=. Then FO/∼= ≡ LFD= over DFO
via the adapted standard translation trst, see Remark 4.7.

4.2 Guarded Fragments

Guarded logics arise as a natural generalization of modal logics. Considering the
standard translation ST of ordinary modal logic ML into FO, we see that all quan-
tifiers in the resulting FO-formulae are relativized to some accessibility relation E:

STx(�ϕ) = ∀y(Exy → STy(ϕ)) and STx(♦ϕ) = ∃y(Exy ∧ STy(ϕ)).

The guarded fragment, denoted GF, is a fragment of relational FO in which all
quantifiers must be relativized (guarded) by some positive atom in this sense. More
formally, GF is the smallest fragment of relational FO generated from atomic formu-
lae by boolean connectives and guarded quantification, which is defined as follows:
if α(xy) is a positive atomic formula and ϕ(xy) a formula in GF with Free(ψ) ⊆
Free(α) = [x] ∪ [y], then

∀y(α(xy)→ ϕ(xy)) ∈ GF and ∃y(α(xy) ∧ ϕ(xy)) ∈ GF.

GF was first introduced in [2], and today many different generalizations have been
considered. For example, weakening the conditions of guarded quantifications leads
to the loosely guarded fragment LGF, introduced in [9], where we can guard quan-
tification by conjunctions of atomic formulae satisfying a certain condition, instead
of single atomic formula. For example, the formula ∀z((x ≤ z ∧ z < y) → ψ(z))
is often found in the translations of formulae of the form (ψ untilϕ) from temporal
logics such as LTL. This quantification is not guarded, but it is loosely guarded
(cf. [23]). On a different note, one can extend the notion of guardedness to fixed
point logics, see e.g. [22].
It was found that many of such guarded logics share much of the nice decidability
and model-theoretic properties of modal logics, see e.g. [2, 17, 23, 10, 20], and it is
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now believed that this guardedness is one of the reasons that modal logics are so
well-behaved [18].
Arguably one of the most natural generalizations of GF within FO was introduced
in [23] as the clique-guarded fragment CGF. It was observed that (loosely) guarded
tuples of some relational structure A induce a clique in the Gaifman graph4 of A.
Moreover, for each finite relational τ and k ∈ N, there is a positive, existential first-
order formula clique(x1, . . . , xk) which is satisfied at a tuple a of some τ -structure
A if and only if a induces a clique in the Gaifman graph of A. CGF is then defined
in an analogous way to GF or LGF, but always uses clique of the right arity as a
guard, in the sense of

∀y(clique(xy)→ ϕ(xy)) and ∃y(clique(xy) ∧ ϕ(xy)).

Overall the following hierarchy is well known (see e.g. [2, 23]):

ML ( GF ( LGF ( CGF ( FO.

Guarded bisimulations between structures A, a and B,b are defined as sets I of
partial isomorphisms between A and B such that (a 7→ b) ∈ I and I is closed
under suitable back and forth conditions. This notion naturally extends to clique-
guarded bisimulation for CGF, as described in [23]. For a survey of various notions
of bisimulation and their uses for understanding expressive power, model-theoretic
and algorithmic properties of modal and guarded logics, we refer the reader to [20].

Fact 4.44. The relevant bisimulations for GF, LGF,CGF are all compatible with
disjoint unions of bisimilar models. More specifically, assume we have clique-guarded
bisimulations I between A and B as well as I ′ between A and C. Then we obtain
that I ] I ′ is a clique-guarded bisimulation between A and B ] C. In particular,
from A, a ∼CGF B,b and A, a ∼CGF C, c we infer

A, a ∼CGF (B ] C),b and A, a ∼CGF (B ] C), c.

This also holds for GF or LGF, since clique-guarded bisimilarity is finer than guarded
and loosely-guarded bisimilarity, see also [2, 23].

This highlights a small but important difference between LFD and the above guarded
fragments. Namely, as a consequence of the above fact and the invariance of these
guarded fragments under their respective bisimulation, they are invariant under
duplications in the following sense.

4The Gaifman graph of a relational τ -structure A has as its universe the universe of A, and
an edge between two unequal elements if they coexist in some relational fact of A, i.e. they occur
together in some c ∈ RA for some R ∈ τ .
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Definition 4.45. Let σ be a vocabulary and C[σ] a class of pointed σ-structures.
Denote disjoint copies of A, a ∈ C[σ] by A′, a′.

1. We say C[σ] is closed under duplications if for all such A, a ∈ C[σ] we have
(A ] A′), a ∈ C[σ] and (A ] A′), a′ ∈ C[σ].

2. Furthermore, we call a fragment L(σ) ⊆ FO(σ) invariant under duplications
if for all A, a ∈ C[σ] and ψ(x) ∈ L(σ) we have

A |= ψ(a) iff (A ] A′) |= ψ(a) ∧ ψ(a′).

Examples of duplication-closed classes are the class of all pointed σ-structures,
or classes defined by some fragment of FO which is invariant under duplications.
Fact 4.44 implies that GF, LGF,CGF are examples of such duplication-invariant frag-
ments of first-order logic.
However, we discussed in Section 3.2 that an analogue for invariance under duplica-
tion does not hold for LFD. This is caused by dependence atoms of the form D∅x,
allowing LFD to state that some variable is constant, which is clearly not invariant
under duplications. Conversely, we saw in Proposition 3.17 that LFD restricted
to (distinguished) dependence models without constant variables is duplication-
invariant, which shows that those constancy atoms are really the only reason that
LFD is not duplication-invariant. Nevertheless, this difference between LFD and the
guarded fragments comes to light for good first-order translations as follows.
Let (τ, V ) be a finite type and (C[σ],F,G, tr, (ϑX)X⊆V ) a good translation of LFD
over DEP [τ, V ] into some L ⊆ FO over C[σ]. Note that for X 6= ∅, the ϑX can be
defined as ∧x∈X ϑx, so the structure of the ϑx essentially decides the structure of ϑX
for X 6= ∅. Regarding these formulae in our example translations, we observe that
the ϑx(x,y) are just conjunctions of positive atoms, where at least one of the atoms
contains variables from both x and y (cf. Examples 4.25 to 4.27). For our case, the
crucial consequence of this is that they require some connection between x and y in
the form of said atom. More formally, they are local in the following sense.

Definition 4.46. Assume we have some A, a ∈ C[σ] and another tuple b ∈ Team(A)
disjoint from a such that no elements of a and b occur together in any relational
fact of A. This means that for all R ∈ σ and c ∈ RA we have [c] ∩ [a] = ∅ or
[c] ∩ [b] = ∅. If it follows for any such triple (A, a,b) that A 6|= ϑx(a,b), then we
say that ϑx is local.

We now show that under reasonable assumptions towards good first-order transla-
tions of LFD, we can use the reason that LFD is not invariant under duplications
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(namely that it can define constants) to show that such translations cannot embed
LFD into duplication-invariant fragments of FO.

Proposition 4.47. Let (C[σ],F,G, tr, (ϑX)X⊆V ) be a good translation of LFD over
DEP [τ, V ] to some L(σ) ⊆ FO(σ) over C[σ] via tr, such that

1. C[σ] is closed under duplications, and

2. there is an x ∈ V so that ϑx is local.

Then L(σ) cannot be invariant under duplications, because tr(D∅x) ∈ L(σ) is not.

Proof. First, observe that for all A, a ∈ C[σ] we have

A, a |= tr(D∅x) iff A |= ∀z(ϑ∅(z, a)→ ϑx(z, a))
iff A |= ∀z∀z′(ϑ∅(z, z′)→ ϑx(z, z′)).

Now, assume for the sake of contradiction that L(σ) is duplication-invariant. Con-
sider some (τ, V ) dependence model M, s with M, s |= D∅x. Set A, a := F(M, s), so
that A, a |= tr(D∅x). Let A′, a′ be a disjoint copy of A, a and A+ := A]A′ their dis-
joint union. Since C[σ] is closed under duplications, we have (A+, a), (A+, a′) ∈ C[σ],
so in particular a, a′ ∈ Team(A+), which in turn yields A+ |= ϑ∅(a, a′). Clearly a
and a′ are disjoint and none of their elements appear together in any relational fact
of A+ (since RA+ = RA]RA′). Therefore A+ |= ¬ϑx(a, a′) per locality of ϑx. Finally,
since tr(D∅x) ∈ L(σ) is invariant under duplication and A, a |= tr(D∅x), we must
also have A+, a |= tr(D∅x). Thus

A+ |= ϑ∅(a, a′) ∧ ¬ϑx(a, a′) and A+, a |= tr(D∅x),

which contradicts the equivalence at the beginning of this proof. �

Corollary 4.48. The standard and modal translation do not embed LFD into the
clique-guarded fragment CGF.

Proof. All ϑx are local for both these translations. Indeed, in the modal case we
have that ϑx(s, t) = s ∼x t is just a binary relation, so clearly local. For the standard
translation, we have ϑx(v,v′) = JT Kv ∧ JT Kv′ ∧ x = x′, which contains the equality
x = x′ that is obviously local, so ϑx is local too. Furthermore, it is easy to see that
the classes DFO and EQD are duplication-closed. Since we already mentioned that
CGF is invariant under duplication, the claim follows from Proposition 4.47. �

There certainly also exist notions expressible in GF but not in LFD. For one, in
the setting of the standard translation it becomes obvious that LFD cannot make
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statements about assignments and values outside of a team; within some A, a ∈
DFO a sentence such as ∃xRx may be true whereas its team-restriction trst(

∃

Rx) =
∃v(JT Kv∧Rx) is not. We also know from Fact 2.12 that LFD cannot define explicit
equality x = y, whereas GF clearly can. But both these examples are mostly a
consequence of the fact that dependence models, and the class DFO corresponding
to them in the context of the standard translation, offer a lot more information than
plain LFD can access. For example, we have seen in the modal context that as long
as the =X-classes are known for all X ⊆ V , the actual values of assignments are
irrelevant for LFD-semantics. Indeed, standard relational models or the structures in
EQD view the assignments as atomic objects, while still offering well-defined LFD-
semantics. It is easy to see that both examples from above fail in this context, as
the required information to express them in GF (or even FO) is simply not present in
structures of SRM or EQD; it is impossible to define a formula ϕ ∈ FO such that
Tdep → eqd(M, s) |= ϕ iff s(x) = s(y) for all suitable M, s. For this reason, we argue
that the standard relational models and the modal perspective in general are the
more natural way to view LFD, and that when comparing the expressive power of
LFD to fragments of FO, the modal translation (or similar ones) should be used, since
it abstracts away the “excess-information” that is not needed for LFD-semantics but
still present in dependence models.
But even in the modal setting we can easily find formulae in GF that are not equiv-
alent to any LFD formula. Indeed, the modal character of LFD emerges in the fact
that apart from dependence atoms, once we change our viewpoint from some current
assignment s to some other assignment t with t =X s via one of the modalities DX

or EX , we cannot refer back to any information about t (except about the values
of X). As a consequence, the modal translation trmod does not produce arbitrary
relational formulae in two variables.5 In particular, we have the following.

Proposition 4.49. Let (τ, V ) be a finite type with x, y, z ∈ V and define σ for
(τ, V ) as in the context of the modal translation, see Definition 4.12. Let

ϕ(s) := ∀t(t ∼x s → (t ∼y s ∨ t ∼z s)) ∈ GF2(σ).

Then there exists no ψ ∈ LFD with trmod(ψ) ≡EQD ϕ.

Proof. It is not hard to find an example of two (∅, {x, y, z}) dependence models that
are LFD-bisimilar, but where their corresponding EQD-structures disagree on ϕ.
The example is then easily extended to arbitrary signatures containing the variables
x, y, z. For the details, see Proposition A.5 in the appendix. �

5This was discussed at the end of Section 4.1.2 when comparing the fragment of FO obtained
via trmod to the undecidable fragment of GF2 with three equivalences defined in Theorem 4.17.
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Corollary 4.50. In the context of the standard and modal translations, LFD is
expressively incomparable to the guarded fragment GF and even the clique-guarded
fragment CGF.

Proof. One direction of this is already shown in Corollary 4.48. We also mentioned
above that in the context of the standard translation, GF (and hence CGF) can define
explicit equality whereas LFD cannot. For the modal translation, we have the above
proposition. �

It seems likely that one can find analogues of Proposition 4.49 or trivial examples
like explicit equality for many more good translations of LFD into relational FO. To-
gether with the generality of Proposition 4.47, this suggests that LFD is intrinsically
expressively incomparable to GF and CGF.

4.3 Logics with Team Semantics

Team semantics is the basis for many modern logics of dependence, independence
and imperfect information (see e.g. [1]). Similarly to LFD, a set of assignments (the
team) is relevant for evaluating formulae. But unlike LFD, there is not a designated
“current” assignment, and evaluation happens on the whole team, leading to non-
classical semantics. Furthermore, the team is not bound to the structure we evaluate
a formula on, and may change during evaluation, i.e. subformulae may be evaluated
on different teams than the original formula. As mentioned in the introduction, team
semantics originated in [26] as a means of providing a compositional, model-theoretic
semantics for Independence-Friendly Logic [24].

Notation 4.51. As the teams are often extended and split during evaluation, we
will use the following standard notations for a team T ⊆ AV :

• If x is some variable (not necessarily in V ), s ∈ T and a ∈ A, then s[x 7→ a] is
the unique assignment that agrees with s on V \{x} and sends x to a. Likewise
with tuples s[x 7→ a].

• T [x 7→ A] := {s[x 7→ a] | s ∈ T, a ∈ A} and T [x 7→ a] := {s[x 7→ a] | s ∈ T}.

• Given a function F : T → P(A) \ {∅} from the team T into the power set of
A excluding the empty set, we set T [x 7→ F ] := {s[x 7→ a] | s ∈ T, a ∈ F (s)}.

• Let T �X := {s �X | s ∈ T} be the restriction of T to the domain X ⊆ V .

Definition 4.52. The (lax) team semantics for FO(τ) over τ -structures A with
universe A is defined recursively via the satisfaction relation A |=T ψ which states
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that the team T satisfies ψ in A. We assume that ψ ∈ FO is in negation normal
form and that T fits to A and ψ, i.e. that T ⊆ AV for V containing the free variables
of ψ.

• If ψ is a relational literal, then A |=T ψ iff A, s |= ψ in the usual Tarski
semantics, for all s ∈ T .

• A |=T ψ1 ∧ ψ2 iff A |=T ψ1 and A |=T ψ2.

• A |=T ψ1 ∨ ψ2 iff T = T1 ∪ T2 for subteams Ti with with A |=Ti
ψi.

• A |=T ∀xψ iff A |=T [x 7→A] ψ.

• A |=T ∃xψ iff A |=T [x 7→F ] ψ for some suitable function F : T → P(A) \ {∅}.

The idea to treat (functional) dependencies as atomic properties of teams was in-
troduced by Väänänen for Dependence Logic in [34]. One extends first-order logic
by atoms dep(x, y) with the following semantics:

A |=T dep(x, y) iff for all s, t ∈ T : s =x t implies s =y t.

One crucial difference to dependence atoms DXy in LFD is that dep(x, y) represents
global dependence whereas DXy is local, see also Examples 2.3 and 2.4. Hence, for a
structure M with universe M and a team T ⊆MV we can consider the dependence
model M = (M, T ) and obtain the equivalence

M |=T dep(x, y) iff M |= ∀

Dxy.

On the other hand, it is not clear how one would retrieve a notion of local dependence
from the atoms of dependence logic. Other atoms commonly added to FO with team
semantics include

• Inclusion: A |=T x ⊆ y iff T (x) ⊆ T (y).

• Exclusion: A |=T x | y iff T (x) ∩ T (y) = ∅.

• Conditional independence: A |=T x⊥zy iff for all s, t ∈ T with s(z) = t(z)
there exists u ∈ T with u(z) = s(z) = t(z) and u(xy) = s(x)t(y).

For some C ⊆ {dep,⊆, |,⊥} we write FO(C ) to denote the logic one obtains by
adding the atoms in C to FO with team semantics. Inclusion and exclusion were
introduced in [16], and independence logic FO(⊥) was proposed in [21]. The following
hierarchy with respect to all formulae was shown in [16]:

FO ( FO(dep) = FO(|) ( FO(⊆, |) = FO(⊥).
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Hence we will freely use dependence atoms within FO(⊆, |) = FO(⊥). Apart from
atoms we may also add new connectives such as

• Classical negation: A |=T notψ iff A 6|=T ψ.

• Classical disjunction: A |=T ψ1 t ψ2 iff A |=T ψ1 or A |=T ψ2.

Classical disjunction can be defined in team semantics by constancy atoms; in re-
striction to models with at least two elements, it holds for ψ1, ψ2 ∈ FO(⊆, |) that

ψ1 t ψ2 ≡ ∃c∃d(dep(c) ∧ dep(d) ∧ [(c = d ∧ ψ1) ∨ (c 6= d ∧ ψ2)]).

Here c and d are fresh variables not occurring in ψ1, ψ2 or the domain of T , and
dep(c) := dep((), c) denotes dependence on the empty tuple of variables, i.e. that c
is constant in the team, like D∅c would do for LFD. Note that if we only have one
element, we can also only have a single assignment, and then team disjunction ∨
coincides with classical disjunction t. Hence we can freely use classical disjunction
t for formulae in FO(⊆, |).
The following properties are often used to compare logics with team semantics.

Definition 4.53 (Downward closure and flatness). The logic FO(C ) satisfies down-
ward closure if for all ψ ∈ FO(C ) and fitting A with team T we have

A |=T ψ implies A |=T ′ ψ, T ′ ⊆ T.

The following stronger property is called flatness:

A |=T ψ iff A |={s} ψ, s ∈ T,

Here A |={s} ψ is equivalent to A, s |= ψ in the classical Tarski semantics of FO with
a single assignment s.

Definition 4.54. We say that FO(C ) is local if for all ψ ∈ FO(C ) and every set of
variables X with Free(ψ) ⊆ X we have

A |=T ψ iff A |=(T �X) ψ

for all suitable A and T .

Lemma 4.55. FO satisfies flatness, and FO(dep) satisfies downward closure.

Proof. See [34, Proposition 3.35] and [34, Proposition 3.10]. �

Lemma 4.56. In our setting of lax team semantics, FO(⊆, |) = FO(⊥) is local.
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Proof. See [16, Theorem 4.22]. �

For a more complete overview of the mentioned extensions of FO with team seman-
tics, we refer the reader to [34, 1, 16].
We now want to give a translation of LFD into a logic with team semantics. The
desired form is as follows, where (τ, V ) is a finite type as usual. Given M, s ∈
DEP [τ, V ] and ϕ ∈ LFD(τ, V ) we want to define trteam(ϕ) and a fitting team TM,s

over M such that

M, s |= ϕ iff M |=TM,s
trteam(ϕ).

Let v be a tuple which enumerates V and ṽ a fresh copy of v. These will have the
fixed meaning that assignments of the team TM are stored within TM,s(v) = TM(v)
and the current assignment s is stored within TM,s(ṽ) = {s(v)}, so ṽ will be constant
throughout TM,s. Formally

TM,s := TM[ṽ 7→ s(v)] = {vṽ 7→ t(v)s(v) | t ∈ TM}.

Lemma 4.57. Under the above constraints of how the translation should look like,
it is not possible to embed LFD into dependence logic FO(dep).

Proof. The crucial difference is that by Lemma 4.55 dependence logic is downwards-
closed, whereas LFD is not (in a suitably adapted sense). Indeed it is generally not
the case that (M, T ) |= ϕ entails (M, T ′) |= ϕ for sentences ϕ ∈ LFD and subteams
T ′ ⊆ T . As an example, consider the negated global dependence ϕ = ¬ ∀Dxy.
Clearly a full dependence model with universe {0, 1} satisfies ϕ, whereas the model
with its team restricted to a single assignment does not satisfy ϕ.
With how we defined TM,s, the downwards-closure of trteam(ϕ) would yield the
downwards-closure of ϕ in the above sense, a contradiction. Since we know from
Lemma 4.55 that dependence logic is downwards-closed, the claim follows. �

We will instead give a translation into FO(⊆, |) = FO(⊥) that was communicated
to the author by Richard Wilke.6 For the translation of quantifiers DX and EX we
will need another copy v′ of v, which will be considered fresh every time we use it,
meaning all its variables have not been used before. Other tuples of variables are
assumed to be contained within one of v, ṽ,v′ and will be annotated accordingly,
e.g. x, x̃,x′ are pairwise disjoint copies of another with [x] ⊆ [v], [x̃] ⊆ [ṽ] and
[x′] ⊆ [v′]. Similarly to v′, we will also require fresh variables x̂, ŷ on a few occasions
(and these should not be considered part of v).

6Mathematical Foundations of Computer Science, RWTH Aachen University, Aachen, Germany.
E-mail address: wilke@logic.rwth-aachen.de
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Define for β ∈ FO(⊆, |) and FO-literals α, γ the auxiliary notation

α→ β := ¬α ∨ (α ∧ β) and α↔ γ := (α ∧ γ) ∨ (¬α ∧ ¬γ).

Note that we can define non-constancy in FO(⊆) by stating that a variable z takes
at least two different values: for fresh variables x̂, ŷ we have

not dep(z) ≡ ∃x̂∃ŷ(x̂ 6= ŷ ∧ x̂ ⊆ z ∧ ŷ ⊆ z).

Given ϕ ∈ LFD(τ, V ) in negation normal form we construct trteam(ϕ) as follows. The
rules for literals, boolean connectives, and dependence atoms are straightforward:

• trteam(ϕ) = ϕ[v 7→ ṽ] whenever ϕ is a relational literal. Here ϕ[v 7→ ṽ]
denotes the formula one obtains from ϕ by replacing each variable of v with
its counterpart in ṽ.

• trteam(ϕ1 ∧ ϕ2) = trteam(ϕ1) ∧ trteam(ϕ2).

• trteam(ϕ1 ∨ ϕ2) = trteam(ϕ1) t trteam(ϕ2).

• trteam(Dxy) = (x = x̃)→ (y = ỹ).

• trteam(¬Dxy) = (x = x̃)→ not dep(y).

For translating Ex ϕ we need to choose an assignment t from our team that agrees
with the current assignment s on x, and then evaluate trteam(ϕ) on something like
TM,t, where the values of the current assignment are updated to t(v).
Let v′ be a fresh copy of v. The idea is that we quantify v′ suitably to represent
our next assignment t ∈ TM with t =x s. For this, we state that v′ is constant, and
that its tuple of values occurs in our team, via v′ ⊆ v. The requirement t =x s is
then expressed as x′ = x̃, since s is represented by ṽ. Then, we want to evaluate
trteam(ϕ) with the new current assignment stored in v′. Overall, we define

trteam(Ex ϕ) = ∃v′(
∧

v′∈[v′]
dep(v′) ∧ v′ ⊆ v ∧ x′ = x̃ ∧ trteam(ϕ)[ṽ 7→ v′]).

As before, trteam(ϕ)[ṽ 7→ v′] represents the formula one obtains from trteam(ϕ) by
replacing all variables in ṽ with their copies in v′.
Formulae of the form Dx ϕ ∈ LFD usually need to be evaluated at multiple as-
signments, namely at those in the =x-class of the current assignment. Hence, for
translating Dx ϕ, we construct a team that is analogous to the union of all TM,t for
t in the =x-class of s. To preserve our intended interpretation of the team, we then
want to evaluate trteam(ϕ) separately on each such TM,t. For this we introduce the
following auxiliary concept.
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Definition 4.58. Consider a ψ ∈ FO(⊆, |) and fitting structure A with team T .
For some tuple x over the domain of T , let

A |=T Γx.ψ iff A |=(T �x=a) ψ, a ∈ T (x),

where (T �x = a) := {t ∈ T | t(x) = a}.

Lemma 4.59. In the above setting, if none of the variables x ∈ [x] are quantified
within ψ, then Γx.ψ is equivalent to some formula in FO(⊆, |).

Proof. First note that for all (tuples of) variables x,y, z and variables y in the
domain of T we have

• Γx. dep(z, y) ≡ dep(xz, y).

• Γx.(z ⊆ y) ≡ (xz ⊆ xy).

• Γx.(z | y) ≡ (xz | xy).

• If ψ ∈ FO, then Γx.ψ ≡ ψ by flatness of FO (cf. Definition 4.53).

Furthermore, for ψ1, ψ2 ∈ FO(⊆, |) it is easy to see that

Γx.(ψ1 ∧ ψ2) ≡ (Γx.ψ1) ∧ (Γx.ψ2).

This also holds for (team) disjunction:
If A |=T Γx.(ψ1 ∨ ψ2), then for every a ∈ T (x) we can split (T �x = a) = T 1

a ∪ T 2
a

such that A |=T i
a
ψi. If we define T i := ⋃

a∈T (x) T
i
a, then clearly (T i �x = a) = T ia

and hence A |=T i Γx.ψi. Since also T 1 ∪ T 2 = T , we get A |=T (Γx.ψ1) ∨ (Γx.ψ2).
Conversely, if A |=T (Γx.ψ1)∨ (Γx.ψ2), then we find T 1∪T 2 = T with A |=T i Γx.ψi.
Define T ia := (T i �x = a). Then A |=T i

a
ψi and T 1

a ∪ T 2
a = (T �x = a), so we have

A |=(T �x=a) ψ1 ∨ ψ2, for all a ∈ T (x). Thus A |=T Γx.(ψ1 ∨ ψ2).
This proves

Γx.(ψ1 ∨ ψ2) ≡ (Γx.ψ1) ∨ (Γx.ψ2).

Moreover, if y /∈ [x], then

(T �x = a)[y 7→ A] = (T [y 7→ A] �x = a)

and analogously for suitable Skolem extensions F : T → P(A) \ {∅} it holds that

(T �x = a)[y 7→ F ] = (T [y 7→ F ] �x = a).
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This shows that whenever y /∈ [x], we have

Γx.∀yψ ≡ ∀yΓx.ψ and Γx.∃yψ ≡ ∃yΓx.ψ.

Therefore, since ψ does not quantify any variables in [x], we can transform Γx.ψ
to an equivalent formula in FO(⊆, |) by iteratively distributing Γx over connectives
and quantifiers down to first-order formulae or dependence / inclusion / exclusion
atoms, where we then use the equivalences given at the start of this proof. �

With this we can give the last definition for completely specifying trteam. Again let
v′ be a fresh copy of v. We universally quantify v′, and consider only the subteam
where v′ represents assignments in our team TM,s(v) = TM(v), i.e. where v′ ⊆ v. As
for Ex ϕ, we encode agreement on x with the current assignment by stating x′ = x̃.
Finally, we let v′ replace the role of ṽ as the new current assignment in trteam(ϕ),
and use Γv′ to evaluate trteam(ϕ) at each assignment in the =x-class of s:

trteam(Dx ϕ) = ∀v′((v′ | v) ∨ (v′ ⊆ v ∧ (x′ = x̃→ Γv′.(trteam(ϕ)[ṽ 7→ v′])))).

Proposition 4.60. Our translation of LFD into FO(⊆, |) works as intended. Namely,
for every ϕ ∈ LFD and fitting dependence model M, s ∈ DEP with M = (M, TM)
we have trteam(ϕ) ∈ FO(⊆, |) and

M, s |= ϕ iff M |=TM,s
trteam(ϕ).

Proof. This is shown via an induction on ϕ. The case for literals and boolean
connectives is clear, whereas the idea of the translation of dependence quantifiers
is as explained in this section. The details can be found in Proposition C.5 in the
appendix. �

Remark 4.61. As for trst it is trivial to extend trteam to LFD= by stating trteam(x =
y) = (x̃ = ỹ).



Chapter 5

Complexity Results

5.1 Satisfiability

The satisfiability problem Sat(LFD) is defined as usual; given ϕ ∈ LFD, decide
whether ϕ is satisfiable, and measure the complexity with respect to the length |ϕ|
of ϕ. The proof of decidability of LFD in [6, Section 4] already yields an elementary
upper bound which we specify below.
We assume familiarity with big-O-notation; for our purposes it suffices to say that
for some non-decreasing f : N → N the notation O(f(n)) describes the set of non-
decreasing functions N → N that are asymptotically bounded by f (as n → ∞).
Moreover, we use the common notation

2O(n) :=
⋃
k∈N
O(2kn) and 22O(n) :=

⋃
k∈N
O(22kn).

Note that if p is some polynomial and f ∈ 2O(n), then n 7→ p(f(n)) is still in 2O(n).
This is because f ∈ O(2kn) and p ∈ O(n`) for some fixed k, ` ∈ N, and hence
p(f) ∈ O((2kn)`) = O(2`kn) ⊆ 2O(n). An analogous result holds for 22O(n) . We will
also use

22O(n) · 2O(n) :=
⋃
{O(f(n)g(n)) | f ∈ 22O(n)

, g ∈ 2O(n)} = 22O(n)

which is clear by 22kn ≤ 22kn2`n = 2`n+2kn ≤ 22(k+`)n for large enough n and fixed
k, `. We define and prove 2O(n)n = 2O(n) in the same fashion.

Proposition 5.1. Sat(LFD) ∈ 2-Nexptime.

Proof. In Appendix B we cite the relevant definitions from [6, Section 4] and give
most complexity considerations used here.
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Assume we have the input ϕ ∈ LFD with n = |ϕ| and Vϕ being the set of variables
that occur in ϕ. Let Φ be a set that contains all subformulae of ϕ all dependence
atoms DXY

1 for X, Y ⊆ Vϕ, and is closed under one round of negations, where
explicit negations themselves are left as they are. Remark B.1 gives us the bound
|Φ| ∈ 2O(n). Type models M for Φ (cf. Definition B.6) are certain sets of subsets of
Φ. Remark B.7 gives us the bound |M| ∈ 22O(n) for these. [6, Theorem 4.9] shows
that if there exists a type model M for Φ such that there is some ∆ ∈ M with
ϕ ∈ ∆, then ϕ is satisfiable.
Now we decide whether ϕ is satisfiable via the following steps:

1. Nondeterministically guess a set M of subsets of Φ. This takes nondetermin-
istic time |M| ∈ 22O(n) .

2. Check that there is some ∆ ∈M with ϕ ∈ ∆. This can be done in time that
is linear in |M|, so in deterministic time 22O(n) .

3. Lastly we can verify that M is a type model for Φ in deterministic time 22O(n)

(cf. Corollary B.9).

Overall, we can check satisfiability of ϕ in nondeterministic time 22O(n) , so we obtain
Sat(LFD) ∈ 2-Nexptime = ⋃

k∈N Ntime(22nk

). �

Proposition 5.2. Sat(LFD) is Pspace-hard.

Proof. We give a polynomial reduction from the totally quantified boolean formula
problem TQBF, also known as QBF or QSAT. The input of this problem is of the
form

ψ = Q1x1Q2x2 · · ·Qnxnϕ(x1, . . . , xn)

where Qi ∈ {∀,∃} and ϕ(x1, . . . , xn) is a boolean formula. The semantics should
be clear and the decision problem is whether this input evaluates to true. It is well
known that this problem is Pspace-complete (cf. [4, Theorem 3.9] or [33, Theorem
19.1]). We will encode boolean values by means of a predicate R, i.e. if Rx holds,
we consider x to be 1, and otherwise 0. The intended model has universe {0, 1}, R
interpreted as {1}, and a full team {0, 1}V . To enforce the whole space of 2n possible
boolean assignments on arbitrary models M, we state that for each assignment s
and each variable xi we can find assignments t0, t1 which agree with s on everything
except xi, and such that M, t0 |= ¬Rxi and M, t1 |= Rxi. This is expressed by the
sentence

ϑ := ∀n∧
i=1

(EVi
Rxi ∧ EVi

¬Rxi)

1Remember that DXY is shorthand for
∧

y∈Y DXy, see Notation 2.6.
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where we denote Vi := V \ {xi}. Clearly ϑ can be constructed in polynomial time.
Now we transform ψ into an LFD-sentence via the following steps:

1. If Q1 = ∀, then replace Q1x1 by ∀, otherwise by ∃.

2. Replace the subsequent Qixi by DVi
if Qi = ∀, and otherwise by EVi

.

3. Finally replace each occurrence of xi in ϕ by Rxi.

The result is an LFD-sentence ψ∗, and our reduction sends ψ to ϑ ∧ ψ∗ ∈ LFD. As
an example, consider ψ = ∀x∃y∀z(x ∨ y ∨ z) ∈ TQBF. Then

ϑ = ∀(Eyz Rx ∧ Eyz ¬Rx ∧ Exz Ry ∧ Exz ¬Ry ∧ Exy Rz ∧ Exy ¬Rz)

and
ψ∗ = ∀

Exz Dxy(Rx ∨Ry ∨Rz).

It is straightforward to verify the correctness of this reduction. Therefore we obtain
TQBF ≤p Sat(LFD), and thus the Pspace-hardness of Sat(LFD). �

Remark 5.3. We attempted but were not able to adapt a proof for the Nexptime-
hardness of Sat(FO2). The proof we considered is due to Fürer [15] and Lewis [30],
and uses a reduction from domino tilings on exponentially large grids. As we have
seen at the start of Section 2.3, the fact that we can assume without loss of generality
that our dependence models are distinguished (cf. Fact 2.12), creates some difficulties
when we try to enforce confluence within dependence models. Thus, one might try
this at the level of the assignments instead, from the modal perspective. But here, it
is precisely this modal character which causes difficulties. As was already discussed
on various occasions throughout this thesis, we cannot access information about
two unrelated assignments (in the sense that they do not agree on any variable)
simultaneously. To guarantee a valid tiling, one needs to state that all objects
(assignments) sharing neighbouring coordinates are tiled by compatible dominos.
But the coordinates are usually encoded as monadic predicates X0, Y0, . . . , Xn, Yn,
and such objects (assignments) with neighbouring coordinates may not be related
by any ∼x (i.e. the assignments may be disjoint). Hence a quantification of the form

∀s∀t(neighbour(s, t)→ compatibleTiles(s, t))

is necessary, which must allow s and t to be disjoint, and sentences of this form
are generally not equivalent to any (translated) LFD-sentences, see e.g. the end of
Sections 4.1.2 and 4.2.
Overall, this begs the question whether there is a suitable variant of tiling arguments
that can be expressed within LFD.
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5.2 Model Checking

The model checking problem for FO, denoted MC(FO), is defined as follows: Given
a formula ψ(x) ∈ FO, a fitting finite structure A, and constants a in A interpreting
the free variables x of ψ, determine whether A |= ψ(a). The complexity is measured
in the size of all inputs, i.e. the length |ψ| of ψ and the size |A| of the structure A.
The problems MC(ML),MC(GF) or MC(FOk) for k ∈ N are defined analogously to
MC(FO).

Remark 5.4. Analogously to Remark B.1 which we used for the proof of Propo-
sition 5.1, we want to remark that we can consider |A| to be the cardinality of
the universe A of A. This is because τ is finite, and hence the actual length of a
reasonable encoding of A with all relations is still polynomial in the cardinality of
A. Since we are only interested in complexity classes, a polynomially larger input
makes no difference; consider for example that log(nk) = k log n ∈ O(log n) for fixed
k, meaning that if something is logarithmic in nk, then it also logarithmic in n.
Likewise, if something is polynomial in nk, it is obviously still polynomial in n.

Theorem 5.5. The problems MC(ML) and MC(FOk) for k ≥ 2 are Ptime-complete
whereas MC(FO) is Pspace-complete.

Proof. See [19, Section 4]. �

Later these results were extended to guarded first-order and fixed point logics in
[10], showing in particular that MC(GF) is Ptime-complete.
Henceforth let L denote LFD or LFD=. The model checking problem for L is essen-
tially the same; as input we are given some ψ ∈ L(τ, V ) and finite M, s ∈ DEP [τ, V ]
for some finite type (τ, V ). The task is to decide whether M, s |= ψ. We letM denote
the underlying τ -structure of M with finite universe M . It turns out however that
the complexity is largely influenced by how we encode the team TM of M. Before
we discuss these technicalities, we will consider the special case of full models.

Remark 5.6. LFD over full dependence models (of finite type) corresponds to rela-
tional first-order logic without equality; the quantifiers ∃x and ∀x respectively have
the same semantics as EVx and DVx over full dependence models, where Vx := V \{x}.
A version of this was already used in the proof of Proposition 5.2.

It is therefore not surprising that for this special case, we obtain the same lower
bounds as for first-order model checking.

Definition 5.7. The decision problem MCfull(L) is the restriction of model checking
for L to instances where the team is always the full team. More formally:
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1. The inputs are tuples (ψ,M,v, s) where

(a) ψ ∈ L(τ, V ) for some finite type (τ, V ).

(b) M is a τ -structure with finite universe M .

(c) v is an enumeration of V .

(d) s ∈ T is the current assignment, encoded as the tuple s(v).

2. The task is to decide whether (M,MV ), s |= ψ.

3. The complexity is measured in the size of the input, so essentially with respect
to |ψ|+ |M|+ |V |.

For k ∈ N we also consider the variant MCk
full(L) where always |V | ≤ k.

Proposition 5.8. MCfull(L) is Pspace-hard.

Proof. We can adapt our reduction from TQBF to Sat(LFD) in the proof of Propo-
sition 5.2 to obtain a reduction from TQBF to MCfull(L). For a given input

ψ = Q1x1 · · ·Qnxnϕ(x1, . . . , xn)

with Qi ∈ {∀,∃}, construct the input (ψ∗,M,v, s) for MCfull(L), where

• ψ∗ is defined in the exact same way as in the proof of Proposition 5.2, namely
by replacing Q1x1 with ∀or ∃, the Qixi with DVi

or EVi
, and all xi in ϕ by

Rxi. Here Vi := V \ {xi}.

• M is the intended model from the proof of Proposition 5.2. It consists of the
universe M = {0, 1} and a monadic predicate RM = {1}.

• v = x1, . . . , xn.

• s = (0, . . . , 0) is irrelevant since ψ∗ is a sentence.

In the reduction TQBF ≤p Sat(LFD) of Proposition 5.2 we had to add another
formula ϑ to enforce all possible boolean assignments on the variables to exist, but
in the context of MCfull(L) this is guaranteed by the full team. Now ψ∗,v and s are
clearly computable in polynomial time from the input, and M is always the same,
i.e. constant. This shows TQBF ≤p MCfull(L). �

Proposition 5.9. MCk
full(L) is Ptime-hard for k ≥ 2.
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Proof. The Ptime-hardness of MC(FOk) for k ≥ 2 is shown in [19] by proving the
Ptime-hardness for MC(ML) via a logspace-reduction from the GAME-problem2

and noting that ML is a sublogic of FO2. For our case, note that ML (via the same
standard translation) is in particular a sublogic of relational FO2 without equality.
Hence the model checking problem for said fragment of FO2 must be Ptime-hard
as well. We already discussed above that LFD over full models (of finite type)
corresponds to relational FO without equality. Indeed, for V = {x, y}, it is trivial
to give a logspace-computable translation from relational equality-free formulae ψ ∈
FO2 to equivalent formulae ψ∗ ∈ LFD, in the sense that for all suitable structures A
and assignments s

A, s |= ψ iff (A, AV ), s |= ψ∗.

Indeed, simply replace ∃x by Ey and ∀x by Dy, likewise with x and y interchanged.
This proves the Ptime-hardness of MCk

full(L) for k ≥ 2. �

Solving the model checking problem for L. First, we present a general
method for solving the model checking problem for L that abstracts away the
specifics on how the team is encoded. Without loss of generality we only deal
with formulae in negation normal form, where negations are pushed inwards as far
as possible (down to the atoms) by using the duality between DX and EX as well as
de Morgan’s laws.
We assume familiarity with alternating complexity classes.3 In the proof of Theo-
rem 5.5 in [19], an alternating algorithm for solving the first-order model checking
problem was given. The following results were obtained.

Fact 5.10 ([19]). There exists an alternating algorithm that solves instances (ψ,A, a)
of the first-order model checking problem requiring only

1. alternating space O(log |ψ|+ r log |A|), where r is the maximal number of free
variables in any subformula of ψ, and

2. alternating time O(|ψ| log |A|).

Together with the well-known results

Alogspace = Ptime and Aptime = Pspace

one then obtains that MC(FOk) ∈ Ptime, k ∈ N and MC(FO) ∈ Pspace. We
adapted this algorithm to work for L in Algorithm 1.

2The GAME-problem is defined and shown to be Ptime-complete in [27].
3For a background in alternating complexity classes, see [5, Chapter 3] or [33, Chapters 16.2 &

19.1].
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Algorithm 1: Alternating model checking for L ∈ {LFD, LFD=}
ModelCheck(ψ,M, s)
Input: a formula ψ ∈ L(τ, V ) in negation normal form where (τ, V ) is finite, and

a finite pointed dependence model M, s ∈ DEP[τ, V ].

if ψ is a relational literal or (in)equality then
if M, s |= ψ then Accept else Reject

if ψ = DXy then
universally choose t ∈ TM with t =X s
if t =y s then Accept else Reject

if ψ = ¬DXy then
existentially guess t ∈ TM with t =X s
if t 6=y s then Accept else Reject

if ψ = η ∧ ϑ then
universally choose ϕ ∈ {η, ϑ}
ModelCheck(ϕ,M, s)

if ψ = η ∨ ϑ then
existentially guess ϕ ∈ {η, ϑ}
ModelCheck(ϕ,M, s)

if ψ = DX ϕ then
universally choose t ∈ TM with t =X s
ModelCheck(ϕ,M, t)

if ψ = EX ϕ then
existentially guess t ∈ TM with t =X s
ModelCheck(ϕ,M, t)

It encodes the usual model checking game between an existential and universal
player, played on positions (ϕ, t) where ϕ is some subformula of ψ and t ∈ TM an
assignment. The initial position is (ψ, s), and the players take turns according to
the structure of the subformula at the current position. Algorithm 1 is run with
these positions as inputs and implements the rules of this game; at positions where
we existentially guess in the algorithm, the existential player, who is trying to show
that M, s |= ψ, makes a move. So he chooses disjuncts at disjunctions, assignments
at positions EX ϕ or ¬DXy and wins whenever the algorithm Accepts, i.e. when
we arrive at some (ϕ, t) where ϕ is a literal with M, t |= ϕ. Dually, the universal
player tries to show that M, s 6|= ψ, so she tries to find counterexamples in the form
of choosing conjuncts at conjunctions and assignments at positions DX ϕ or DXy.
She wins at positions the algorithm Rejects, so at positions (ϕ, t) where ϕ is a
literal and M, t 6|= ϕ. It is straightforward to verify the correctness of Algorithm 1.
Essentially, the algorithm accepts if and only if the existential player has a winning
strategy in this game (which happens if and only if M, s |= ψ).
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How to encode the team. Now we come back to the discussion on how to encode
the team. A first idea might be the following.

Definition 5.11. We encode the team by listing all contained assignments. More
specifically, define the problem MClist(L) as follows.

1. The inputs are tuples (ψ,M,v, s, T ) where

(a) (ψ,M,v, s) have the same interpretation as in Definition 5.7 for MCfull(L).

(b) T ⊆MV is a team with s ∈ T , encoded as the list of tuples T (v).

2. The task is to decide whether (M, T ), s |= ψ.

3. The complexity is measured in the input size, so essentially with respect to
|ψ|+|M|+|V |+|T |. Analogously to Remark 5.4 it makes no difference whether
we consider |T | as the cardinality of T or the actual length of a reasonable
encoding of T , since the latter is still polynomial in the input size.

It is easy to give examples that demonstrate a core problem with this approach.

Example 5.12. GivenM with universeM = {1, . . . , 9} and variables V = {x, y, z},
it is clear that a team such as

T = {s ∈MV | s(x) ∈ {1, 2, 3}, s(y) ∈ {4, 5, 6}, s(z) ∈ {7, 8, 9}}

can be encoded in more efficient ways than simply listing all assignments. For
example, we could specify the rule set that was used in the set-builder notation. An
even more drastic example is the full team MV ; an algorithm deciding membership
of this team is trivial, whereas encoding the full team as a list leads to an exponential
blowup, as it has size |M ||V | and V is independent of M.

So givenM, ψ, V and a current assignment s, encoding a team T ⊆MV as a list of all
its assignments generally leads to an exponentially longer input. As a consequence
of this, one obtains a deceptively low complexity for MClist(L).

Proposition 5.13. We can implement Algorithm 1 to decide instances (ψ,M,v, s, T )
of MClist(L) with alternating workspace O(log |ψ|+ log |T |).

Proof. We implement picking4 assignments t ∈ T by picking a pointer to some tuple
in the list representing T . Such as pointer requires log |T | space.

4Here, “picking” refers to either existentially guessing or universally choosing.
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The algorithm only needs to keep track of the current position (ϕ, t), since ψ,M and
T are never modified. A pointer of length log |ψ| suffices to specify the current sub-
formula ϕ of ψ. As mentioned above, we represent assignments by pointers of length
log |T |. We only ever need a constant number of assignments in the workspace, which
proves the claim. �

Corollary 5.14. MClist(L) ∈ Alogspace = Ptime.

Remark 5.15. Comparing the above to our result that MCfull(L) is Pspace-hard,
these results seem to contradict the common belief that Ptime 6= Pspace. This is
however not the case, as the two problems differ on the usual length of their inputs.
Indeed, there cannot exist a polynomial-time reduction from MCfull(L) to MClist(L),
because the size of the full team MV is exponential in the size |ψ| + |M| + |V | of
the input of MCfull(L).

Nevertheless, this disparity shows that the approach of encoding T as a list is unsat-
isfying. We need some way to specify the team in a more compact way. A common
approach is to encode the team as a first-order formula ϕT over the vocabulary τ∪M
where all elements of M are added as constants (cf. Definition 4.37). The idea is
that for all tuples t ∈M |V | we have

MM |= ϕT (t) iff there is some t ∈ T with t(v) = t.

As an example, consider the team T stated in Example 5.12, which can be encoded
as the formula

ϕT (x, y, z) =
 ∨
i∈{1,2,3}

x = i

 ∧
 ∨
i∈{4,5,6}

y = i

 ∧
 ∨
i∈{7,8,9}

z = i

 .
Listing all assignments would correspond to the disjunctive normal form of this ϕT ,
which is a lot longer than this conjunctive normal form.

Definition 5.16. We encode the team by a first-order formula as described above.
More specifically, define the problem MCformula(L) as follows.

1. The inputs are tuples (ψ,M,v, s, ϕT ) where

(a) (ψ,M,v, s) have the same interpretation as in Definition 5.7 for MCfull(L).
(b) ϕT ∈ FO(τ ∪M) encodes T ⊆MV as described above; for all t ∈M |V |:

MM |= ϕT (t) iff there is some t ∈ T with t(v) = t.

2. The task is to decide whether (M, T ), s |= ψ.
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3. The complexity is measured in the input size, so essentially with respect to
|ψ|+ |M|+ |V |+ |ϕT |.

Lemma 5.17. We can implement Algorithm 1 so that a given instance (ψ,M,v, s, ϕT )
for MCformula(L) is solved requiring only

1. alternating spaceO(log |ψ|+(|V |+r) log |M|+log |ϕT |), where r is the maximal
number of free variables in any subformula of ϕT , and

2. alternating time O(|ψ| · (|ψ|+ |M|+ (|V |+ |ϕT |) log |M|)).

Proof. Assignments t are encoded by their values t(v), thus taking O(|V | log |M|)
space. We implement picking5 assignments t ∈ T by picking a tuple t ∈ M |V | and
then performing first-order model checking on (ϕT ,MM , t). We know that |MM |
is polynomial in |M| and hence log |MM | ∈ O(log |M|), see Remark 5.4. It follows
from Fact 5.10 that picking an assignment in this way requires alternating space
O((|V |+ r) log |M|+ log |ϕT |) and alternating time O((|V |+ |ϕT |) log |M|).
As in the proof of Proposition 5.13, we only need to keep track of the current position
(ϕ, t), and the current subformula ϕ is specified via a pointer of length log |ψ|. We
only ever need to store a constant number of assignments, taking overall space
O(|V | log |M|). Because we can always reuse the space for the first-order model
checking, this yields the claimed bound on the alternating space-complexity.
For the time analysis, note that testing whether t =X s for two assignments s, t in
the workspace is possible within alternating time O(|V | log |M|). Furthermore:

1. If ϕ is a relational literal or an (in)equality, we can evaluate whether M, s |= ϕ

in alternating time O(|ψ|+ |M|+ |V | log |M|).

2. In the case of dependence atoms or dependence quantifiers, the algorithm
picks a new assignment t ∈ T , does a constant number of checks of the form
t =X s, and possibly updates the current assignment from s to t and the
current subformula from EX ϕ or DX ϕ to ϕ. With the bounds we gave above
this takes alternating time O(|ψ|+ (|V |+ |ϕT |) log |M|).

3. Choosing some subformula at conjunctions and disjunctions takes only O(|ψ|)
time, since we essentially just have to move our pointer within ψ.

At each recursive call we move to some subformula of the currently considered
formula, so we have at most |ψ| recursive calls. From the above points, we see
that in each call the algorithm takes at most O(|ψ| + |M| + (|V | + |ϕT |) log |M|)
alternating time until it either terminates or invokes the next recursive call. This
proves the claimed bound on the alternating time-complexity. �

5Here, “picking” refers to either existentially guessing or universally choosing.
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Corollary 5.18. MCformula(L) ∈ Aptime = Pspace.

We want to show an analogue of MC(FOk) ∈ Alogspace = Ptime. The idea is
to define MCk

formula(L) as the restriction of MCformula(L) to instances where always
|V | ≤ k. So we need to prove that when |V | ≤ k, the space-complexity given in
Lemma 5.17 is logarithmic in the input. The problem is the occurrence of r, which
describes the maximum number of free variables in any subformula of ϕT . It comes
from the space-complexity of first-order model checking (ϕT ,MM , t) for t ∈ M |V |.
Currently, we allow arbitrary ϕT ∈ FO(τ ∪ M) to represent the team T in the
input. To obtain our wanted analogue, we need to bound r by some constant for all
instances of MCk

formula(L).
Every team T ⊆ MV can be encoded by an FO(τ ∪M)-formula ϕT that uses only
the variables in V . Indeed, although rather inefficient, we can just set

ϕT (v) =
∨
t∈T

(v = t(v)).

This shows that it is very lenient to assume that there exists some global bound for
r in all instances of MCk

formula(L).

Definition 5.19. For k ∈ N and B ≥ k, define MCB,k
formula(L) as the restriction of

MCformula(L) to instances (ψ,M,v, s, ϕT ) where:

1. |V | ≤ k, and

2. every subformula of ϕT has at most B free variables.

Corollary 5.20. MCB,k
formula(L) ∈ Alogspace = Ptime for all B ≥ k ∈ N.

Proof. From Lemma 5.17 and the above definition of MCB,k
formula(L) we see that we can

solve instances (ψ,M,v, s, ϕT ) of MCB,k
formula(L) with the algorithm from Lemma 5.17

requiring only alternating space O(log |ψ|+ log |M|+ log |ϕT |). �

Proposition 5.21.

1. MCformula(L) is Pspace-complete.

2. MCB,k
formula(L) is Ptime-complete for all B ≥ k ≥ 2.

Proof. One part is already known from Corollaries 5.18 and 5.20. Since the full
team is specified by ϕMV (v) = True, we obtain the following logspace-computable
reduction showing that MCfull(L) ≤log MCformula(L):

MCfull(L)→ MCformula(L), (ψ,M,v, s) 7→ (ψ,M,v, s,True).
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Via the same reduction we can show that MCk
full(L) ≤log MCB,k

formula(L) for all B ≥
k ∈ N. The claim then follows from Propositions 5.8 and 5.9. �

This shows that under reasonable assumptions, the complexity of model checking L
is analogous to the complexity of first-order model checking; Pspace-complete in
general, but Ptime-complete in restriction to k variables, for k ≥ 2.



Chapter 6

Remarks on the Finite Model
Property

Although deciding whether LFD has the finite model property (FMP) has certainly
been the main focus of the author on numerous occasions over the period of writing
this thesis, an answer was unfortunately not found. In this chapter we wish to
mention various interesting observations and the approaches that have been tried to
tackle this problem.
For the rest of this chapter we fix some finite type (τ, V ). A dependence model is
finite if it has a finite universe. A logic has the FMP if every satisfiable sentence in
it has some finite model. Since V is finite, a finite universe always entails a finite
team. The converse holds up to LFD-equivalence:

Remark 6.1. Let M, s ∈ DEP [τ, V ] be a dependence model with a finite team
T . Considering the definitions of the translations to and from standard relational
models (cf. Definition 4.10), we see that the universe of

N, t := Tsrm → dep(Tdep → srm(M, s))

consists of equivalence classes of assignments in T , indexed by variables from V .
Therefore it must be finite. Moreover, we know from Fact 4.11 that N, t ≡LFD M, s,
which shows that only the objects which appear in some assignment of the team
are relevant for evaluating LFD-formulae on dependence models. In particular, M
is LFD-equivalent to a finite dependence model, hence in the context of LFD we can
consider dependence models with finite teams as finite.

We want to mention that [6, Section 6] defined a more general version of the standard
relational models, now just called relational models, for which a finite model property
was shown via filtration in [6, Proposition 6.5]. However, this does not imply a finite
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model property for LFD on SRM or DEP .

Proposition 6.2. The following are equivalent.

1. LFD has the finite model property.

2. All characteristic formulae χ2
M,s of the 2-LFD-bisimulation classes of depen-

dence models have a finite model.

3. Every dependence model is 2-LFD-bisimilar to a finite dependence model.

Proof. Based on Lemma 3.10, the equivalence of (2) and (3) is obvious. As each
χ2

M,s is satisfiable, the implication “(1) =⇒ (2)” is clear as well.
Now assume (2) and let ψ ∈ LFD be satisfiable. Using our Scott normal form from
Proposition 4.1, we see that there exists some ϕ ∈ LFD with qr(ϕ) ≤ 2 so that ψ and
ϕ are satisfiable over the same universes. In particular ϕ has some model M, s |= ϕ.
Per assumption there exists a finite dependence model N, t with N, t |= χ2

M,s. Then
Lemma 3.10 yields

N, t ∼2
LFD M, s and thus N, t ≡2

LFD M, s

by our Ehrenfeucht-Fraïssé analogue Theorem 3.12. Because of qr(ϕ) ≤ 2 we have
N, t |= ϕ. Furthermore, since ϕ |= ψ (cf. Proposition 4.1), we can infer that N, t |=
ψ, i.e. that ψ has a finite model. This proves the last implication “(2) =⇒ (1)”. �

We remind the reader of the discussion below Definition 3.7 where we mentioned
that unlike for propositional modal logic, the quantifier rank does not capture the
notion of how far we look into the model, because of the global modality ∀. In the
same vein, remember that all LFD-bisimulations are global (except ∼0). Hence we
cannot simply “cut off” models M, s after some notion of distance around s to obtain
a finite 2-bisimilar model, as one would do for ML.
Another way to transform the problem is to use certain finiteness-preserving good
first-order translations and try to reason about the FMP of the resulting fragment
of FO over the relevant class of structures.

Fact 6.3. Let (C[σ],F,G, tr, (ϑX)X⊆V ) be a good translation of LFD over DEP [τ, V ]
into FO over C[σ] such that:

1. If M, s ∈ DEP [τ, V ] is finite, then F(M, s) is finite as well.

2. If A, a ∈ C[σ] is finite, then G(A, a) is finite as well.
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Then LFD(τ, V ) has the FMP if and only if FO(σ)/∼ has it over C[σ], meaning that
for every satisfiable ϕ ∈ FO(σ) which is equivalent to a translated LFD-formula over
C[σ] (cf. Theorem 4.40), there exists some finite A, a ∈ C[σ] with A, a |= ϕ.

Note that the standard, modal, and functional translations we discussed in Sec-
tions 4.1.1 to 4.1.3 preserve the finiteness of models as described above. One of the
main motivations for the functional translation trfun was that it comes quite close to
embedding LFD into a fragment of the monadic class [all, (ω), (ω)], which consists
of all first-order formulae that only contain monadic predicates and unary functions
but no equality atoms. This class, also called the Löb-Gurevich class, is well known
to have the finite model property (see e.g. [12, Chapter 6.2.1]), but becomes un-
decidable when we allow equality, similar to LFD and LFD=. Formulae translated
by trfun do indeed only use monadic predicates and unary functions, but they also
require equality atoms of the form fx(s) = fx(t) to encode agreement on variables
for assignments s, t. Therefore, trfun does not embed LFD into the monadic class.
To the author’s knowledge, none of the three discussed example translations embed
LFD into a fragment of FO that is known to have the FMP over the relevant class
of structures.
Attacking the problem from the other direction, we also tried to use the above fact to
find an infinity axiom for LFD via the modal translation trmod, by adapting existing
work about FO2 and GF2 on equivalence structures, but unfortunately came to no
conclusion either, as explained below.

Remark 6.4. [29, Example 5.1.1] describes an infinity axiom of FO2 with two equiv-
alence relations E1, E2 and three unary relations P,Q, S by the following conditions:

1. P and Q are disjoint and S and Q are disjoint and not related by E2-links.

2. Every element of P is E1-equivalent to one in Q; every element of Q is E2-
equivalent to one in P .

3. S ∩ P 6= ∅.

4. Every pair of elements both of which belong to P or to Q is either connected
by both E1 and E2 or by neither.

We tried to adapt this to LFD over four variables x, y, z, v, using =x for E1 and =y

for E2, and evaluating the predicates P,Q only on z, and S only on v (essentially, we
take the modal perspective, viewing assignments as our elements in S, P,Q). This
is straightforward for the first three conditions:

1. ψ1 := ∀(¬(Pz ∧Qz) ∧ ¬(Sv ∧Qz) ∧ (Sv → Dy(¬Qz)) ∧ (Qz → Dy(¬Sv))).
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2. ψ2 := ∀((Pz → ExQz) ∧ (Qz → Ey Pz)).

3. ψ3 := ∃(Sv ∧ Pz).

The problem lies in the fourth condition, which in our case translates to the require-
ment that up to =xy, every =x-class and =y-class contains at most one element in
P and one in Q. As a consequence of Corollary 3.18 and Fact 3.19 it seems highly
unlikely that this condition can be expressed in plain LFD.

The role of Corollary 3.18 is crucial; we mentioned below it that if it would not hold,
so for example we could define some ϕ2 ∈ LFD which reasonably enforces |TM(z)| ≤
2, then we could already define an infinity axiom in LFD. This is formalized in the
following proposition.

Proposition 6.5. Assume we have a formula ϕ2 such that for all dependence mod-
els M, s with M, s |= ϕ2 we have |TM(z)| ≤ 2. Define

ψ4 := ϕ2 ∧

∃(Pz ∧ ¬Qz) ∧ ∃(¬Pz ∧Qz) ∧ ∀(Dxzy ∧Dyzx). (6.1)

Then let ψ := ∧4
i=1 ψi where the ψ1, ψ2, ψ3 were defined in Remark 6.4. If ψ is

satisfiable, then it is an infinity axiom.

Proof. Let M, s |= ψ and assume for the sake of contradiction that M is finite. Via
ψ3 there is some t0 ∈ TM with M, t0 |= Sv ∧ Pz. Using ψ2, we inductively define
(tk)k∈N with t2k =x t2k+1 =y t2k+2 and M, t2k |= Pz and M, t2k+1 |= Qz for all k ∈ N.
Since there is exactly one value of z in P and exactly one in Q, we have t2k =z t2`
and t2k+1 =z t2`+1 for all k, ` ∈ N. Therefore, using M |= ∀

Dxzy and M |= ∀

Dyzx

from ψ4, we obtain that t2k =x t2` or t2k =y t2` already implies t2k =xyz t2`, and
likewise for t2k+1 and t2`+1, for all k, ` ∈ N.
Because M is finite, there must exist some smallest k ∈ N such that there is some
n > k with tk =xyz tn. If k > 0 is even, then n must be even too, and tk−1 =y tk =xyz

tn =y tn−1 implies tk−1 =xyz tn−1. But then tk−2 =x tk−1 =xyz tn−1 =x tn−2 and hence
tk−2 =xyz tn−2. Via induction we arrive at t0 =xyz tn−k =y tn−k−1. Since n − k − 1
is odd, we have M, tn−k−1 |= Qz. Together with M, t0 |= Sv and t0 =y tn−k−1 we
obtain our contradiction to ψ1, since S and Q are now related by =y. The case for
k = 0 is included in the above argumentation, and the case for odd k > 0 is shown
analogously. �

Although we already know that LFD= must contain infinity axioms because of its
undecidability, we can use the above proposition to give an explicit one.
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Example 6.6. Using the LFD=-sentence

ϕ2 := D∅z1 ∧D∅z2 ∧

∀(z = z1 ∨ z = z2)

in Proposition 6.5, we obtain an explicit infinity axiom for LFD=.

Proof. Clearly ϕ2 enforces |TM(z)| ≤ 2. We only need to show that ψ as defined in
Proposition 6.5 with the above ϕ2 is satisfiable. Define M as having

1. The universe N.

2. The relations PM := {0}, QM := {1}, and SM := {0}.

3. The following team, with the fixed order of variables x, y, z, v:

TM := {(0, 0, 0, 0)} ∪ {(k, k, 0, 1) | k ≥ 1} ∪ {(k, k + 1, 1, 1) | k ≥ 0}.

The auxiliary variables z1, z2 used in ϕ2 were left out here for ease of pre-
sentation, as they are constant anyways. Specifically, let TM(z1) = {0} and
TM(z2) = {1}.

Now it is trivial to verify that M |= ψ. �

We can also adapt this infinity axiom to another extension of LFD. In the subsection
Learning new facts of [6, Section 7.4] a dynamic extension of LFD was introduced.
It allows restricting the team to those assignments satisfying some formula ϕ via an
update modality [ϕ]:

M, s |= [ϕ]ψ iff M, s |= ϕ implies M|ϕ, s |= ψ

where M|ϕ differs from M only on its team TM|ϕ = {t ∈ TM | M, t |= ϕ}. This
follows the common theme of viewing the process of gaining knowledge as elimination
of possibilities. Logics with such update modalities are sometimes also referred to
as “public announcement logics”.
It was remarked that LFD with this update modality can be reduced to LFD with
new conditional dependence atoms Dϕ

Xy that have the semantics

M, s |= Dϕ
Xy iff ∀t ∈ TM(M, t |= ϕ and t =X s imply t =y s).

[6, Fact 7.14] proves that such conditional dependencies cannot be expressed within
plain LFD. Since no explicit name was given for this logic, we shall call it LCFD for
the “Logic of Conditional Functional Dependence”.
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Definition 6.7. Let (τ, V ) be a type. Then LCFD(τ, V ) is the collection of formulae
obtained by the following rules:

1. LFD(τ, V ) ⊆ LCFD(τ, V ).

2. LCFD(τ, V ) is closed under boolean connectives ∧,¬ and dependence quanti-
fiers DX for finite X ⊆ V .

3. For ϕ ∈ LCFD(τ, V ), finite X ⊆ V and y ∈ V , let Dϕ
Xy ∈ LCFD(τ, V ).

Moreover, denote by LCFD− the fragment of LCFD which only allows conditional
dependence atoms Dϕ

Xy where ϕ ∈ LFD.

To the author’s knowledge, it is still an open question whether LCFD or even LCFD−

is decidable at the time of writing this thesis. We show below that the conditional
dependence atoms allow us to adapt the infinity axiom we discussed above.

Proposition 6.8. LCFD− (and hence LCFD) does not have the FMP.

Proof. We proceed analogously to Example 6.6 and use Proposition 6.5. This time,
define

ϕ2 := DPz
∅ z ∧D¬Pz∅ z.

Define ψ as in Proposition 6.5 with the ϕ2 from here. Let M be the same model as
in Example 6.6, without the auxiliary variables z1, z2 used there. It remains to show
that M |= ϕ2. Let t ∈ TM. If M, t |= Pz, then t = (0, 0, 0, 0) or t ∈ {(k, k, 0, 1) |
k ≥ 1}. Either way we have t(z) = 0. This shows M |= DPz

∅ z. Analogously,
if M, t |= ¬Pz, then t ∈ {(k, k + 1, 1, 1) | k ≥ 0}, and t(z) = 1. This shows
M |= D¬Pz∅ z, so overall M |= ϕ2. �



Chapter 7

Conclusion and Further Research

Let us recall what we have shown in this thesis. In Section 2.3 we proved the rather
surprising fact that LFD= is a conservative reduction class, negatively answering the
question about its decidability that was posed in [6, Section 7.2].
We showed how to define a notion of bisimulation for both LFD and LFD=, and
related it to equivalence within (the infinitary versions of) LFD and LFD= via our
Ehrenfeucht-Fraïssé analogue Theorem 3.12. We used said theorem to give vari-
ous examples that demonstrate the limits of expressiveness of both these logics, in
particular showcasing LFD’s inability to deal with quantities.
We formally defined what constitutes a reasonable first-order translation of LFD and
gave three examples in Sections 4.1.1 to 4.1.4, illustrating the various perspectives
of LFD. Solidifying the modal character, we proved an analogue of van Benthem’s
Theorem in Theorem 4.40, showing that LFD corresponds to the LFD-bisimulation-
invariant fragment of FO under all good first-order translations. In this spirit of
relating LFD to other logics, we continued in Section 4.2 by proving that LFD is ex-
pressively incomparable to the (clique) guarded fragment in the context of the modal
and standard translation, suggesting that this not caused by the specific first-order
translation of LFD, but rather an intrinsic fact about the disparities between LFD
and guarded fragments of FO. Furthermore, we show how to relate LFD to logics
with team semantics by embedding it into inclusion-exclusion logic (i.e. indepen-
dence logic) in Section 4.3.
In Section 5.1 the complexity of the satisfiability problem of LFD was narrowed town
to lie between Pspace and 2-Nexptime. The complexity of the model checking
problem for LFD and LFD= is shown to to largely depend on the way we encode
teams. Using a compact encoding via first-order formulae, we showed the complexity
to be analogous to that of model checking for FO, namely Pspace-complete, but
Ptime-complete in restriction to k variables.
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We provided techniques and simplifications that may help to settle the question of
whether LFD has the finite model property. We show how the ability to define upper
bounds on the number of values some variable leads to infinity axioms for logics of
the LFD-family. Using our examples from earlier, we demonstrate exactly why this
is impossible in LFD, but also show how it works for LFD= and the extension LCFD
with conditional functional dependencies.
Although technically not part of this thesis, we also want to mention the python
library written by the author1, which was used to find and minimize most of the
examples in this thesis, and may be helpful to others.
Apart from the open questions from [6] that we did not investigate, the following
further questions emerged, some of them in discussion with Alexandru Baltag, Johan
van Benthem, and Erich Grädel:

1. Does LFD have the finite model property (FMP)?

2. What is the exact complexity of the satisfiability problem for LFD?

3. Related to (2.), is there a version of tiling arguments that is possible for LFD
and related logics? (See Remark 5.3).

4. What is the complexity of testing whether two given pointed dependence mod-
els of the same type are bisimilar?

5. What can be said about the extension of LFD by inclusion-atoms x ⊆ y with
the semantics

M, s |= x ⊆ y iff TM(x) ⊆ TM(y).

Can the proof of undecidability for LFD= be adapted?

6. Is LCFD− or even LCFD decidable, despite not having the FMP?

1https://git.rwth-aachen.de/philpuetzstueck/lfd-sat.

https://git.rwth-aachen.de/philpuetzstueck/lfd-sat


Appendix A

Undefinability

The following and most other examples were found using a python library written
by the author.1 We always present the smallest possible counterexample, in the
sense that we first minimized the number of entries in the bisimulation, then the
size of the teams, and finally the number of elements in the structures.

Example A.1. We give an example to show that LFD= cannot define cartesian
products within binary relations. More specifically; we prove that there cannot
exist a formula ψ ∈ LFD= over a relational vocabulary τ ] {R}, such that for every
(τ ] {R}, V ) dependence model M and s ∈ TM we have

M, s |= ψ iff {(a, b) | ∃c : (a, b, c) ∈ RM} is a cartesian product.

It suffices to show this for τ = ∅, R binary and V = {x, y}, because the example
below can be adapted accordingly, e.g. by setting KM = KN = ∅ for all other
relations K ∈ τ , letting variables apart from x, y be constant in both teams while
ensuring agreement on equality atoms, and letting all positions except the first two
of R be constant within both models. Consider

M = ({a, b}, RM, TM) and N = ({0, 1, 2}, RN, TN)

where relations and teams as well as Z ⊆ TM × TN are given by

RM RN TM TN Z

(b, b) (0, 0) (a, a) (0, 0) (a, a) (1, 1)
(2, 2) (b, b) (1, 1) (b, b) (0, 0)

(2, 2) (b, b) (2, 2)

1https://git.rwth-aachen.de/philpuetzstueck/lfd-sat.

https://git.rwth-aachen.de/philpuetzstueck/lfd-sat
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Then it is trivial to verify that Z is an LFD=-bisimulation. Moreover

{b} × {b} = RM ⊆ TM

whereas for N we have

(0, 0), (2, 2) ∈ RN and RN ⊆ TN but (0, 2) /∈ RN.

Hence RM is a cartesian product while RN is not, but M, s ≡∞LFD= N, t.

Example A.2. We give an example to show that LFD= cannot define cartesian
products within the assignment space. More specifically; we prove that there cannot
exist a formula ψ ∈ LFD= such that for every pointed dependence model M, s we
have M, s |= ψ iff TM(x, y) is a cartesian product. Similarly to Example A.1 above,
we can restrict ourselves to an empty vocabulary τ = ∅ and V = {x, y}, since the
example can be adapted accordingly. Consider

M = ({a, b}, TM) and N = ({0, 1, 2}, TN)

where M is full, so TM = {a, b}2 and TN = {0, 1, 2}2 \ {(1, 2), (2, 1)}. Below we
depict TM and TN. The colors represent a bisimulation Z ⊆ TM × TN (e.g. since
(a, a), (1, 1), (2, 2) are blue, we have (a, a)Z(1, 1) and (a, a)Z(2, 2)) and the labels
of the edges denote on which variables the conjoined assignments agree, i.e. they
represent the relations =x and =y.

a, a

a, b b, a

b, b

TM

x y

y x

1, 1

1, 0 0, 1

0, 0

2, 0 0, 2

2, 2

TN

x y

y x

y x
y x

x y

It is straightforward to verify that Z is indeed a bisimulation between M and N.
Moreover, we can see that TM is a cartesian product, while TN is not, even though
there is a (necessarily global) LFD=-bisimulation between M and N, and hence
M, s ≡∞LFD= N, t for all (s, t) ∈ Z by Theorem 3.12.

Proposition A.3. Consider some distinguished dependence model M, s and a copy
M′ of M such that M and M′ are disjoint except for values which are taken by a
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variable that is constant throughout the whole team. Then (M ∪M′), s is still
distinguished, and M, s ∼LFD (M ∪M′), s.

Proof. So let M, s = (M, T ), s be a distinguished (τ, V ) dependence model with
universe M . Denote by C ⊆ V the set of variables that are constant in T , and
define for m ∈M

f(m) :=

m, m is the value of some x ∈ C
m′, otherwise

where the m′ are fresh copies of m, not occurring in M . To construct M′, we set its
universe toM ′ := f(M) and use the team T ′ := {f(t) | t ∈ T} where f(t) represents
the assignment with f(t)(x) = f(t(x)) for all x ∈ V . Finally we let

RM′ := {(f(m1), . . . , f(mn)) | (m1, . . . ,mn) ∈ RM}.

Now M′ is the copy of M that is disjoint to M except for the constants. Write M+

for the union of M and M′, having objects M+ := M ∪M ′, the team T+ := T ∪ T ′
and relations RM+ := RM ∪RM′ . Obviously M+ is still distinguished.
Note that since f : M →M ′ is bijective, we have for t, u ∈ T that

t =X u iff f(t) =X f(u), X ⊆ V.

Moreover, t =X f(u) already implies that X ⊆ C. Indeed, per definition of f we
see that that f(u)(x) = f(u(x)) ∈M iff u(x) is the value of some constant variable,
but since M is distinguished, that variable must be x itself. Note that the converse
holds as well, i.e. t, u, f(t), f(u) agree on C, for all t, u ∈ T . Now define the relation

Z = {(t, t) | t ∈ T} ∪ {(t, f(t)) | t ∈ T} ⊆ T × T+.

We verify that Z is an LFD-bisimulation between M, s and M+, s. Clearly (s, s) ∈ Z
and pairs in Z agree on relational atoms.
Consider a pair (t, t) ∈ Z. We assume M, t |= DXy and show M+, t |= DXy. Let
u ∈ T+ = T ∪ T ′ with u =X t. If u ∈ T , then the assumption immediately yields
u =y t, and we are done. If u = f(q) ∈ T ′ \ T for some q ∈ T , then as explained
above, f(q) = u =X t implies X ⊆ C. But then M, t |= DXy means that y ∈ C

as well, and hence u =y t. We conclude M+, t |= DXy. The converse implication
“M+, t |= DXy implies M, t |= DXy” is clear since T ⊆ T+.
Now consider a pair (t, f(t)) ∈ Z instead. Again we assume M, t |= DXy and show
M+, f(t) |= DXy. Let u ∈ T+ = T ∪ T ′ with u =X f(t). If u = f(q) ∈ T ′ \ T
for some q ∈ T , then f(q) =X f(t), so q =X t and hence q =y t. But then
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u = f(q) =y f(t), and we are done. If u ∈ T , then u =X f(t) implies X ⊆ C, so
y ∈ C and hence u =y f(t), as before. Overall we conclude M+, f(t) |= DXy. For
the converse implication, assume M+, f(t) |= DXy and let u ∈ T with u =X t. Then
f(u) =X f(t), so f(u) =y f(t), and thereby u =y t, which shows M, t |= DXy.
Hence pairs in Z agree on LFD-atoms. Now let t ∈ T . We verify the back and
forth conditions as defined in Definition 3.1, although it actually looks more like
bisimulation for finite types as defined in Fact 3.2, because each assignment in T+

only appears in a single pair in Z.

1. Forth condition at (t, t): For some u ∈ T we choose u ∈ T+ with (u, u) ∈ Z,
regardless of the set X ⊆ u∩ t.

2. Back condition at (t, t): Let u ∈ T+ = T ∪ T ′.

(a) If u ∈ T we again correspond with u to (u, u) ∈ Z.

(b) If u = f(q) ∈ T ′ \ T , we choose q ∈ T to arrive at (q, f(q)) ∈ Z. Since
f(q)∩ t = C and clearly q =C t, this always works out.

3. Forth condition at (t, f(t)): For some u ∈ T we can choose f(u) ∈ T ′ with
(u, f(u)) ∈ Z, since (u∩ t) = (f(u)∩ f(t)).

4. Back condition at (t, f(t)): Let u ∈ T+ = T ∪ T ′.

(a) If u = f(q) ∈ T ′ \ T , then we again correspond with q ∈ T to land at
(q, f(q)) ∈ Z.

(b) If u ∈ T , then we can choose u ∈ T to arrive at (u, u) ∈ Z, since
u∩ f(t) = C and clearly u =C t.

We conclude that Z is an LFD-bisimulation and hence M, s ∼LFD M+, s. �

Example A.4. We give an example to show that LFD= cannot define any non-
trivial upper bounds on the number of assignments in some =X-class that satisfy
some relational atom. More specifically, given:

1. some n ≥ 1,

2. a relational vocabulary {R} ∪ τ ,

3. a set of variables V 6= ∅ with a finite proper subset X ( V ,

4. and a tuple x ∈ V ar(R),
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there exist two LFD=-bisimilar pointed ({R} ∪ τ, V ) dependence models M, s and
N, t such that the =X-class of s in TM contains at most n assignments s′ for which
M, s′ |= Rx, whereas the =X-class of t in TN contains more than n such assignments.
It suffices to show this for the case where τ = ∅, V = {x}, X = ∅,x = x and R is a
monadic predicate. Indeed, as described in Example A.1 we can set KM = KN = ∅
for all other K ∈ τ to ensure bisimilar assignments from below will agree on all new
relational atoms. Moreover, if we want larger V and X, then we simply choose some
x ∈ V \X and make all other variables constant, with two distinct variables sharing
the same constant in one team iff the same holds in the other, thus guaranteeing
that all bisimilar assignments from below will agree on all new equality atoms. It
is easy to see that we can also adapt R to have a higher arity by extending the
contained tuples with enough constant dummy values according to x, which must
contain the non-constant variable x.
For the special case τ = ∅, V = {x}, X = ∅,x = x and R monadic, consider

M = ({a, b}, RM, TM) and N = ({0, . . . , n+ 1}, RN, TN)

where RM = {b}, RN = {1, . . . , n + 1} and the teams are full, so TM = {a, b} and
TN = {0, . . . , n+ 1}.2 Now the bisimulation is obvious:

Z := {(a, 0)} ∪ {(b, k) | k ∈ {1, . . . , n+ 1}}.

It is clear that this is indeed an LFD=-bisimulation; the related assignments agree
on Rx and do not agree on any variables with any other assignment in their respec-
tive teams. Since in this special case we have X = ∅, the claim now follows by
considering an arbitrary (s, t) ∈ Z and noting that

M, s ∼LFD= N, t and |{s′ ∈ TM | s′ =X s, M, s′ |= Rx}| = 1
but |{t′ ∈ TN | t′ =X t, N, t′ |= Rx}| = n+ 1.

Proposition A.5. Let (τ, V ) be a finite type with x, y, z ∈ V and define σ for
(τ, V ) as in the context of the modal translation, see Definition 4.12. Set

ϕ(s) := ∀t(t ∼x s → (t ∼y s ∨ t ∼z s)).

Then there exists no ψ ∈ LFD with trmod(ψ) ≡EQD ϕ.

Proof. The notation ≡EQD was introduced in Notation 4.30. First consider the
special case τ = ∅ and V = {x, y, z}. We construct LFD-bisimilar (τ, V )-dependence
models M, s and N, t such that their translations via Tdep → eqd disagree on ϕ.

2Remember that when an order of V is clear from context, we denote assignments by their tuple
of values, so here the number 0 listed for TN represents the assignments (x 7→ 0) ∈ TN.
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Consider M with universeM = {a, b} and N with universeN = {0, 1, 2}. We denote
assignments s by their tuple of values s(xyz). Depicted below are TM and TN. The
colors represent a bisimulation Z ⊆ TM × TN, (e.g. since (a, a, b), (0, 2, 1), (0, 0, 2)
are green, we have (a, a, b)Z(0, 2, 1) and (a, a, b)Z(0, 0, 2)). The nodes with a thicker
border mark s = (a, b, b) and t = (0, 1, 1). The labels of the edges denote on which
variables the conjoined assignments agree, i.e. they represent =y and =z. We left
out =x for ease of presentation.

a, b, a

a, b, b

a, a, b

TM

s

y

z

0, 1, 0

0, 1, 1 0, 1, 2

0, 2, 1 0, 0, 2

TN

t

t′

y y

y

z z

This view of the models M and N as is essentially already the modal perspective,
viewing the assignments as atomic objects. In particular, remember that TM is
the universe of Tdep → eqd(M) and the =x,=y,=z correspond to the equivalences
∼x,∼y,∼z on Tdep → eqd(M).
It is straightforward to see that for all s′ ∈ TM we have s′ =y s or s′ =z s, whereas
we have t′ = (0, 0, 2) ∈ TN with t′ =x t but t′ 6=y t and t′ 6=z t. Hence, it readily
follows that Tdep → eqd(M, s) |= ϕ but Tdep → eqd(N, t) 6|= ϕ. We verify that Z is
indeed an LFD-bisimulation as given in Fact 3.2. For all (s, t) ∈ Z:

1. s and t agree on atoms, i.e. are 0-bisimilar. There are no relations, the role of
x can be disregarded and y, z are not constant, so we mention only

(a) Blue nodes satisfy Dzy and ¬Dyz.

(b) Red nodes satisfy ¬Dzy and ¬Dyz.

(c) Green nodes satisfy ¬Dzy and Dyz.

2. Up to ∼0, the =y-classes and =z-classes of each assignment in both teams are
determined by its own ∼0-class. Here “up to ∼0” just means “up to the same
color”, so for example in both teams the =y-class of a red node has red and blue
nodes, whereas its =z-class has red and green nodes. With this information,
the back and forth conditions are obvious.

Hence Z is a bisimulation, so M, s ∼ N, t and therefore M, s ≡LFD N, t. For any
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ψ ∈ LFD we have

Tdep → eqd(M, s) |= trmod(ψ) iff M, s |= ψ

iff N, t |= ψ

iff Tdep → eqd(N, t) |= trmod(ψ).

Since Tdep → eqd(M, s) and Tdep → eqd(N, t) disagree on ϕ, it follows that there cannot
exist a ψ ∈ LFD with ϕ ≡EQD trmod(ψ).
As for most other examples in this appendix, we can adapt this example to arbitrary
finite signatures (τ, V ) where x, y, z ∈ V , by simply letting RM = RN = ∅ for all
new relation symbols in R ∈ τ , and letting all new variables v ∈ V \ {x, y, z}
be constant in both TM and TN. This ensures that the adapted versions of the
assignments that are bisimilar in the above example will still be bisimilar in the
adapted example. �



Appendix B

Syntactic Type Models

We cite the definitions of [6, Section 4] that are relevant to the proof of Proposi-
tion 5.1, where we prove Sat(LFD) ∈ 2-Nexptime by analyzing the proof of decid-
ability in said section. We use everything stated about big-O-notation at the start
of Section 5.1.
Let ϕ ∈ LFD with n := |ϕ| and Vϕ be the set of all occurring variables. Also consider
the set Φ that contains all subformulae of ϕ (at most n2 many) all dependence atoms
DXY for X, Y ⊆ Vϕ (at most 22n many) and is closed under one round of negations,
where explicit negations themselves are left as they are.

Remark B.1. The number of elements of Φ is bounded by 2(n2 + 22n) ∈ 2O(n).
Formally, the input to some algorithm is encoded over some fixed reasonable (non-
unary) alphabet such as {0, 1}. Therefore a bound on the actual size of Φ, encoded as
string over said alphabet, is slightly larger, obtained by multiplying the cardinality of
Φ with |ϕ| = n. But asymptotically this makes no difference, since 2O(n)n = 2O(n).
Generally, since we are only interested in complexity classes, it does not matter
whether our input is polynomially longer. In particular, it is irrelevant whether
we consider |Φ| to be the cardinality or the length of a reasonable encoding of Φ,
because we will always use the bound |Φ| ∈ 2O(n), which holds in either case.

Definition B.2 (Hintikka Set, [6, Definition 4.1]). A subset Σ ⊆ Φ is a Hintikka
set for Φ if it satisfies the following conditions, where all formulas mentioned run
over Φ only:

1. ¬ψ ∈ Σ iff ψ /∈ Σ.

2. ϕ ∧ ψ ∈ Σ iff ϕ, ψ ∈ Σ.

3. if DX ψ ∈ Σ, then ψ ∈ Σ.

4. DXx ∈ Σ for all x ∈ X ⊆ Vϕ.

5. if DXY,DYZ ∈ Σ, then DXZ ∈ Σ.



91

Note that deciding whether Σ ⊆ Φ is a Hintikka set for Φ is clearly possible in time
that is polynomial in |Φ| ∈ 2O(n), so overall still in time 2O(n).

Definition B.3 (Dependence closure, [6, Definition 4.2]). Given a Hintikka set Σ ⊆
Φ, a set of variables X ⊆ Vϕ is dependence-closed (with respect to Σ) if we have
for every y ∈ Vϕ that DXy ∈ Σ implies y ∈ X. The dependence-closure of a set of
variables X ⊆ Vϕ with respect to Σ is the set

DΣ
X := {y ∈ Vϕ | DXy ∈ Σ}.

Fact B.4 ([6, Fact 4.3]). For a Hintikka set Σ ⊆ Φ and some X ⊆ Vϕ we have

1. X ⊆ DΣ
X .

2. DΣ
X is dependence-closed with respect to Σ.

Also note that we can compute DΣ
X in time |Vϕ||Σ| ∈ 2O(n), by linearly searching Σ

for DXy, for each y ∈ Vϕ.

Definition B.5 ([6, Definition 4.4]). For Hintikka sets Σ,∆ ⊆ Φ and X ⊆ Vϕ,

Σ ∼X ∆ iff Σ and ∆ have the same formulae ψ ∈ Φ with Free(ψ) ⊆ X.

Again it is easy to see that we can check Σ ∼X ∆ in time that is polynomial in
|Σ|+ |∆| ≤ 2|Φ| ∈ 2O(n), hence overall in time 2O(n).

Definition B.6 (Type model, [6, Definition 4.6]). A type model for Φ is a set M

of Hintikka sets for Φ obeying the following “witness condition” for existential de-
pendence quantifiers:

(W) If EX ψ ∈ Σ ∈ M and Y := DΣ
X , then there exists ∆ ∈ M, such that ψ ∈ ∆

and Σ ∼Y ∆.

Remark B.7. The same argument about length vs. cardinality we made for |Φ|
in Remark B.1 holds also for any set M of subsets of Φ, so in particular for type
models. We will simply state that for such sets M,

|M| ≤
∑

∆⊆Φ
|∆| ≤ 2|Φ||Φ| ∈ 22O(n) · 2O(n) = 22O(n)

.

Lemma B.8. For a given set M of Hintikka sets for Φ, we can check the witness
condition for M in time 22O(n) .

Proof. Consider the following procedure.
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(1) Iterate over all formulae in all Hintikka sets of M.

(2) Whenever we find EX ψ ∈ Σ ∈M:

(a) Compute the dependence closure Y := DΣ
X .

(b) Iterate over all formulae in all Hintikka sets of M (nested in (1)).
(c) If we find that ψ is contained in some ∆ ∈M:

i. Check whether Σ ∼Y ∆.
ii. If yes, continue the outer iteration (1), otherwise the inner one (b).

(d) If we do not find such a ∆ containing ψ, Reject.

(3) Accept.

Clearly every step, and hence the whole process, is possible in time that is polynomial
in 22O(n) . Overall, we can check the witness condition in time 22O(n) . �

Corollary B.9. Given some set M of subsets of Φ, we can verify in time 22O(n)

whether M is a type model for Φ.

Proof. To do this, we only need the following two steps:

1. Verify that each of the sets in M is a Hintikka-Set of Φ. A single set can be
checked in time 2O(n) (cf. Definition B.2). We have at most |M| ∈ 22O(n) such
sets. Hence this first step can be done in deterministic time 22O(n)2O(n) = 22O(n) .

2. Check the witness condition for M in time 22O(n) .

Overall this takes time 22O(n) . �



Appendix C

Further Details

Lemma C.1. Let L denote LFD or LFD= and ψ ∈ L∞. If the (quantifier) rank
of ψ as defined in Definition 3.7 is some limit ordinal λ, then we can write ψ as a
boolean combination of formulae ϕi with qr(ϕi) < λ.

Proof. Fix some limit ordinal λ. We do a simple induction over the way we con-
structed formulae in L∞. Clearly no ψ ∈ L can have quantifier rank λ, so the claimed
implication “qr(ϕ) = λ implies ϕ is can be written as a boolean combination of ϕi
with qr(ϕi) < λ” holds true for all ϕ ∈ L.
Now assume that the claimed implication holds for ϕ ∈ L∞, then it obviously also
holds for ¬ϕ. Moreover, qr(DX ϕ) 6= λ for all finite X ⊆ V , since qr(DX ϕ) is always
a successor ordinal, so the implication also holds for DX ϕ.
The last induction step is conjunction. So assume that Φ ⊆ L∞ is a set of formulae
such that the claimed implication holds for every ϕ ∈ Φ. If qr(∧Φ) = supϕ∈Φ qr(ϕ) =
λ, then qr(ϕ) ≤ λ for all ϕ ∈ Φ. Moreover, we use the induction hypothesis to write
every ϕ ∈ Φ with qr(ϕ) = λ as a boolean combination of ϕi with qr(ϕi) < λ. But
then ∧Φ itself is written as a boolean combination of formulae ϕi with qr(ϕi) < λ.
Hence the claimed implication also holds for ∧Φ. This concludes the induction. �

Corollary C.2. Let M, s and N, t be dependence models of the same (not neces-
sarily finite) type. Also let λ be a limit ordinal. Then

M, s ≡λL∞ N, t iff M, s ≡αL∞ N, t, α < λ.

Theorem C.3 (Ehrenfeucht-Fraïssé and Karp theorems for LFD and LFD=).
Let L denote LFD or LFD=. For M, s and N, t of the same finite type it holds that

M, s ∼kL N, t iff M, s ≡kL N, t, k ∈ N.

93



94 APPENDIX C. FURTHER DETAILS

As a consequence we obtain that under those same conditions

M, s ∼ωL N, t iff M, s ≡L N, t.

For arbitrary (i.e. not necessarily finite) types it holds that

M, s ∼αL N, t iff M, s ≡αL∞ N, t, α ∈ Ord

and therefore
M, s ∼L N, t iff M, s ≡∞L N, t.

Proof. The finite case was already shown in Theorem 3.12. For the sake of com-
pleteness, we state the analogous proof for the case of infinite types and L∞.
Consider some arbitrary type (τ, V ) and let M, s and N, t be (τ, V ) dependence
models. It is again clear that ∼0

L corresponds to ≡0
L∞ . We proceed by (transfinite)

induction. First consider successor ordinals: So assume that we have shown that
∼αL coincides with ≡αL∞ for some α ∈ Ord. We want to show the same for α + 1:

1. “=⇒”: We assume M, s ∼α+1
L N, t and show M, s ≡α+1

L∞ N, t.
A formula of quantifier rank α+1 is just a boolean combination of at least one
formula of the form DX ϕ with qr(ϕ) = α, and other formulae with quantifier
rank at most α. Since (α+1)-L-bisimilarity entails α-L-bisimilarity, the induc-
tion hypothesis yields M, s ≡αL∞ N, t. So it suffices to show that M, s |= DX ϕ

iff N, t |= DX ϕ, for all finite X ⊆ V and ϕ ∈ L∞(τ, V ) of quantifier rank α.
To this end, suppose M, s |= DX ϕ for such an X and ϕ. We want to show
N, t |= DX ϕ. If t′ ∈ TN is an arbitrary assignment in the =X-class of t, then
by the (α + 1)-back condition there exists some s′ ∈ TM with

M, s′ ∼αL N, t′ and s′ =X s.

Since we assumed M, s |= DX ϕ this implies M, s′ |= ϕ. By the induction
hypothesis we infer from M, s′ ∼αL N, t′ that

M, s′ ≡αL∞ N, t′ and therefore N, t′ |= ϕ.

As t′ was an arbitrary assignment in the =X-class of t, we conclude that N, t |=
DX ϕ. The converse implication “N, t |= DX ϕ implies M, s |= DX ϕ” follows
analogously, using the (α+1)-forth condition instead. By our above argument
we obtain that M, s ≡α+1

L∞ N, t, and conclude that (α+1)-L-bisimilarity implies
L∞-equivalence up to rank α + 1.

2. “⇐=”: We assume that M, s ≡α+1
L∞ N, t and show M, s ∼α+1

L N, t.
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Since M, s satisfies its own characteristic formula of rank α + 1, we obtain

N, t |= χα+1
M,s which is equivalent to M, s ∼α+1

L N, t

by Lemma 3.11. Hence L∞-equivalence up to rank α + 1 implies (α + 1)-L-
bisimilarity.

This concludes the induction step for successor ordinals. Now let λ be a limit ordinal
and assume we have shown the claim for all α < λ. Using Corollary C.2 we obtain

M, s ∼λL N, t iff M, s ∼αL N, t, α < λ

iff M, s ≡αL∞ N, t, α < λ

iff M, s ≡λL∞ N, t.

This concludes the induction step for limit ordinals. Now we know that α-L-
bisimilarity coincides with L∞-equivalence up to rank α, for all ordinals α. As
a corollary we then obtain

M, s ∼L N, t iff M, s ∼αL N, t, α ∈ Ord
iff M, s ≡αL∞ N, t, α ∈ Ord
iff M, s ≡∞L N, t. �

Proposition C.4. Let (τ, V ) be a finite type and (C[σ],F,G, tr, (ϑX)X⊆V ) a good
translation of LFD over DEP [τ, V ] to FO over C[σ]. If k ∈ N, then

A, a ∼k B,b iff G(A, a) ∼k G(B,b)

for all (A, a), (B,b) ∈ C[σ]. Likewise A, a ∼ B,b iff G(A, a) ∼ G(B,b).

Proof. We prove the first claim via an induction on k for all (A, a), (B,b) ∈ C[σ]
simultaneously. The base case of k = 0 is clear, since by Definition 4.29

A, a ∼0 B,b iff A, a ≡0
LFD B,b

iff G(A, a) ≡0
LFD G(B,b)

iff G(A, a) ∼0 G(B,b).

For the induction step, assume the correspondence holds for k ∈ N.

1. “=⇒”: We assume A, a ∼k+1 B,b and show G(A, a) ∼k+1 G(B,b).
First, let s := G(a) ∈ TG(A) and t := G(b) ∈ TG(B). Since A and B are
clear from context, we will simply write a ∼k+1 b instead of A, a ∼k+1 B,b
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and s ∼k+1 t instead of G(A, a) ∼k+1 G(B,b) in the following. Hence, the
situation is that we assumed a ∼k+1 b and want to show s ∼k+1 t. We verify
the (k + 1)-back condition, see Definition 3.4.

Let t′ ∈ TG(B). Per definition of good translations (cf. Definition 4.23), we
have the surjection G : Team(B)� TG(B), so there exists b′ ∈ Team(B) with
G(b′) = t′. Let X ⊆ t′ ∩ t, so B |= ϑX(b′,b). By the (k + 1)-back condition
for a ∼k+1 b as defined in Definition 4.32, we know there exists a′ ∈ Team(A)
with a′ ∼k b′ and A |= ϑX(a′, a). Then we can set s′ := G(a′) ∈ TG(A) to
obtain that s′ =X s, and by the induction hypothesis s′ ∼k t′. This proves the
(k + 1)-back condition for s ∼k+1 t, see Definition 3.4.

The (k + 1)-forth condition is shown analogously, using the (k + 1)-forth con-
dition for a ∼k+1 b instead. Hence we obtain that s ∼k+1 t.

2. “⇐=”: Using the same notation as above, s ∼k+1 t and show a ∼k+1 b. We
verify the (k + 1)-back condition, as given in Definition 4.32.

Let b′ ∈ Team(B) and X ⊆ V with B |= ϑX(b′,b). For t′ := G(b′) we
have t′ =X t, so by the (k + 1)-back condition as given in Definition 3.4, we
obtain an s′ ∈ TG(A) with s′ =X s and s′ ∼k, t′. Since we have the surjection
G : Team(A) � TG(A), we find an a′ ∈ Team(A) with G(a′) = s′. Then A |=
ϑX(a′, a), and per induction hypothesis a′ ∼k b′. This proves the (k+ 1)-back
condition for a ∼k+1 b, see Definition 4.32.

The (k + 1)-forth condition is shown analogously, using the (k + 1)-forth con-
dition for s ∼k+1 t instead. Hence we obtain that a ∼k+1 b.

This concludes the induction.
The case for full bisimulation is shown analogously. One compares Definitions 3.1
and 4.31, and uses the surjection on teams induced by G in the same fashion as
above. Given a bisimulation Z ⊆ Team(A)× Team(B), the set

L := {(G(a),G(b)) | (a,b) ∈ Z} ⊆ TG(A) × TG(B)

is then a bisimulation between G(A) and G(B). For the other direction, if L ⊆
TG(A) × TG(B) is a bisimulation between G(A) and G(B), then

Z := {(a,b) | (G(a),G(b)) ∈ L} ⊆ Team(A)× Team(B)

is a bisimulation between A and B. �

Proposition C.5. Our translation of LFD into FO(⊆, |) which we defined in Sec-
tion 4.3 works as intended. Namely, for every ϕ ∈ LFD and fitting dependence
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model M, s ∈ DEP with M = (M, TM) we have trteam(ϕ) ∈ FO(⊆, |) and

M, s |= ϕ iff M |=TM,s
trteam(ϕ).

Proof. The claim follows from an induction on ϕ in negation normal form. The base
case for literals ϕ ∈ LFD as well as the induction steps for boolean connectives ∧,∨
are easily verified. Consider the following technical observation:

M |=TM,s[v′ 7→t(v)] trteam(ϕ)[ṽ 7→ v′] iff M |=TM,t
trteam(ϕ). (C.1)

Indeed, we have Free(trteam(ϕ)[ṽ 7→ v′]) ⊆ V ] V ′ and

TM,s[v′ 7→ t(v)] �(V ] V ′) = (TM,s �V )[v′ 7→ t(v)] = TM[v′ 7→ t(v)].

Therefore, by locality of FO(⊆, |) (cf. Lemma 4.56), we obtain

M |=TM,s[v′ 7→t(v)] trteam(ϕ)[ṽ 7→ v′]
iff M |=TM,s[v′ 7→t(v)] �(V ]V ′) trteam(ϕ)[ṽ 7→ v′]
iff M |=TM[v′ 7→t(v)] trteam(ϕ)[ṽ 7→ v′].

Now notice that no variables of Ṽ occur anymore in the domain of the regarded team
or as variables in the regarded formula. Since variables have no intrinsic meaning
in team semantics, we can simply replace the variables V ′ with those in Ṽ . Per
definition we have TM[ṽ 7→ t(v)] = TM,t, so we can continue the above equivalences
with

M |=TM[v′ 7→t(v)] trteam(ϕ)[ṽ 7→ v′]
iff M |=TM[ṽ 7→t(v)] trteam(ϕ)
iff M |=TM,t

trteam(ϕ).

This proves the equivalence (C.1). The induction steps for Ex ϕ and Dx ϕ are now
straightforward. With the definition of trteam(Ex ϕ) and (C.1) we obtain

M |=TM,s
trteam(Ex ϕ)

iff M |=TM,s[v′ 7→t(v)] trteam(ϕ)[ṽ 7→ v′] for some t ∈ TM with t =x s

iff M |=TM,t
trteam(ϕ) for some t ∈ TM with t =x s

iff M, t |= ϕ for some t ∈ TM with t =x s

iff M, s |= Ex ϕ,
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where we also used the induction hypothesis in the second to last step. Analogously

M |=TM,s
trteam(Dx ϕ)

iff M |=T x′ = x̃→ Γv′.(trteam(ϕ)[ṽ 7→ v′]) where T =
⋃
t∈TM

TM,s[v′ 7→ t(v)]

iff M |=T Γv′.(trteam(ϕ)[ṽ 7→ v′]) where T =
⋃
t∈TM
t=xs

TM,s[v′ 7→ t(v)]

iff M |=TM,s[v′ 7→t(v)] trteam(ϕ)[ṽ 7→ v′] for all t ∈ TM with t =x s

iff M |=TM,t
trteam(ϕ) for all t ∈ TM with t =x s

iff M, t |= ϕ for all t ∈ TM with t =x s

iff M, s |= Dx ϕ. �
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