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1. Introduction

I collect here exercises that have helped my learn about spectra. Formally, everything is
happening in the land of ∞-categories, and “category” should be read as “∞-category”, and
similarly for terms like “(co)limit”. However, I hope (and expect) that much can be gained from
these exercises even without precise knowledge of this language. If you have any feedback, please
feel free to send me an email.

Some of the exercises are harder or require more background knowledge, and I would not
recommend them to someone just starting to learn about spectra. These are marked with a (⋆),
and I plan to give hints or links to full solutions of some of these in an appendix. Many of these
are simply fun facts I’ve learned from reading papers or certain MathOverflow posts.

These notes are currently very much work in progress! Moreover, they are heavily biased
towards my own interests, and may not cover the most “useful in practice”-material. Besides
this, I have not thought too much about the precise amount of knowledge I want to assume the
reader to have, though certainly a rough understanding about working with higher categorical
(co)limits is expected; mostly just suspension/loops, pushouts/pullbacks, (co)fiber sequences and
(co)products.

For a detailed introduction to modern stable homotopy theory (including stable ∞-categories)
I can recommend Bastiaan Cnossen’s lecture notes on Stable Homotopy Theory [Cno24], This
includes a short modern introduction to the language of higher category theory. For an even
more in-depth view of higher category theory, I can recommend Rune Haugseng’s notes for his
PhD course on higher categories [Hau25].

2. Arithmetic in Spectra

The basic setup and axioms we will assume are as follows:
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(1) There is a “nice” category Sp whose objects we call spectra, which formally behaves a
lot like the derived category of integers D(Z). In particular, it admits all (small) limits
and colimits, and stability has the following useful consequences:
(a) A commutative square in Sp is a pushout square if and only if it is a pullback square.
(b) The adjoint pair Σ: Sp ⇄ Sp :Ω is one of mutually inverse equivalences. Hence one

often writes Σ−1 = Ω.
(c) Sp is an additive category, so we have a zero object 0, finite coproducts and products

agree via a canonical map, and π0 mapSp(X,Y ) is forms an abelian group, allowing
us to add and subtract maps of spectra.

(2) Sp admits a closed symmetric monoidal structure, whose unit is denoted S and called
the sphere spectrum. In particular, the tensor product ⊗ preserves colimits in both
variables.

(3) There are functors πn : Sp→ Ab for each n ∈ Z. These commute with infinite products
and filtered colimits, and are jointly conservative, meaning that if f : X → Y is some
map of spectra such that πnf is an isomorphism for each n, then f is an equivalence of
spectra. Moreover, there is a natural equivalence πn(−) = π0 mapSp(Σ

nS,−).
(4) A (co)fiber sequence of spectra X

f−→ Y
g−→ Z induces a long exact sequence of homotopy

groups

· · · → πn+1Z → πnX
πnf−−→ πnY

πng−−→ πnZ → πn−1X → · · ·

(5) There is a fully faithful functor Ab ↪→ Sp, A 7→ HA. We call HA the Eilenberg-MacLane
spectrum for A (and often it is simply denoted A itself under abuse of notation). The
characterizing property of an Eilenberg-MacLane spectrum is that its homotopy groups
are concentrated in degree 0, i.e. πn(HA) = 0 for n ̸= 0, and π0(HA) ∼= A.

(6) We have π0(S) = Z and πk(S) = 0 for k < 0 and πk(S) is finite for k > 0, infinitely often
non-zero, and p-torsion first occurs in degree k = 2p− 3.

Exercise 2.1. To familiarize yourself with these concepts, show the following properties:

(1) Also Spop is stable and admits all (small) limits and colimits.
(2) Let hom = homSp : Sp

op × Sp → Sp denote the internal hom. This is exact in both
variables, i.e. both hom(X,−) and hom(−, X) preserve finite limits and colimits.

(3) There are natural equivalences πn(ΩX) ∼= πn+1(X) and πn(ΣX) ∼= πn−1(X).
(4) For a spectrum X, we have X ≃ 0 if and only if πnX = 0 for all n.

Exercise 2.2 (More on Cofiber Sequences).

(1) Cofiber sequences can be rotated: If X
f−→ Y

g−→ Z is a cofiber sequence, then there

is a map Z
h−→ ΣX such that Y

g−→ Z
h−→ ΣX and Z

h−→ ΣX
Σf−−→ ΣY are also cofiber

sequences.1 In fact, one can keep going in both directions

· · · → ΩX
Ωf−−→ ΩY

Ωg−−→ ΩZ → X
f−→ Y

g−→ Z → ΣX
Σf−−→ ΣY

Σg−−→ ΣZ → Σ2X → · · ·

so that every 2 consecutive maps form a cofiber sequence, and applying π0 recovers the
usual long exact sequence on homotopy groups

· · · → π1X
π1f−−→ π1Y

π1g−−→ π1Z → π0X
π0f−−→ π0Y

π0g−−→ π0Z → π−1X
π−1f−−−→ π−1Y

π−1g−−−→ π−1Z → π−2X → · · ·

(2) A map f : X → Y of spectra is an equivalence if and only if its cofiber vanishes, if and
only if its fiber vanishes.

1Technically there should be −Σf in place of Σf here, but for purposes of exactness and cofiber sequences the
signs do not matter, so we sweep them under the rug here.
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(3) Suppose you have a (vertical) map of (horizontal) cofiber sequences

X Y Z

X ′ Y ′ Z ′

f

a

g

b c

f ′ g′

If two of the three maps a, b, c are equivalences, then also the third one is an equivalence.
(4) A commutative square of spectra

A B

C D

f

g h

k

is a pushout square if and only if A
(f,g)−−−→ B ⊕ C

h−k−−−→ D is a cofiber sequence.

(5) For a cofiber sequence X
f−→ Y

g−→ Z, the following are equivalent:
(a) Z → cofib(g) is nullhomotopic.
(b) g admits a section, i.e. a map s : Z → Y with gs ≃ idZ .
(c) There is an equivalence Y ≃ X ⊕Z under which f respectively g identifies with the

summand inclusion respectively projection.
In this case, also the associated long exact sequence on homotopy groups consists of
many split short exact sequences.

Exercise 2.3 (More on Eilenberg-MacLane Spectra). Let A,B be abelian groups.

(1) The functor H : Ab→ Sp preserves products, coproducts and filtered colimits. Moreover,
it sends short exact sequences to cofiber sequences.

(2) Show π0 hom(HA,ΣHB) = π−1 hom(HA,HB) = Ext1Z(A,B). In particular, there can
be non-trivial maps HA→ ΣHB, which are necessarily zero on all homotopy groups!
(In fact, we will later see that the Steenrod squares Sqn give rise to non-trivial maps
HF2 → ΣnHF2 for all n.) Convince yourself that on the other hand, by fully faithfulness
of H : Ab→ Sp, any map ΣnHA→ HB is zero for any abelian groups A,B and n ≥ 1.

(3) We will later2 see that there is a natural isomorphism A⊗B = π0(HA)⊗ π0(HB)
∼=−→

π0(HA ⊗HB) (where on the left the tensor product is the underived / ordinary one
of abelian groups), and that π1(HZ ⊗ HZ) = 0. Using this, show that there is an

isomorphism TorZ1(A,B)
∼=−→ π1(HA ⊗ HB). In particular, unlike in Ab, we have

HFp ⊗ HFp ̸≃ HFp, and Eilenberg-MacLane spectra are generally not closed under
tensor products.

(4) Convince yourself that for each k ∈ Z there is a natural (in spectra X,Y ) map⊕
m+n=k

πm(X)⊗ πn(Y )→ πk(X ⊗ Y ),

[ΣmS f−→ X]⊗ [ΣnS g−→ Y ] 7→ [Σm+nS = ΣmS⊗ ΣnS f⊗g−−−→ X ⊗ Y ]

where we are using the natural identification πm(X) ∼= π0 homSp(Σ
mS, X). We may

equivalently think of this as a map π∗(X) ⊗ π∗(Y ) → π∗(X ⊗ Y ) of graded abelian
groups (where the left side uses the graded tensor product), i.e. a lax symmetric monoidal
structure on π∗ : Sp→ grAb. Note that by the previous point, this is generally not an
isomorphism.

2See Exercises 4.7 and ??
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Definition 2.4. For an abelian group A, a spectrum X, and k ∈ Z, one often writes

Hk(X;A) := πk(X ⊗HA) and Hk(X;A) := π−k hom(X,HA).

2.1. Inverting Integers & Rational Spectra. Since Sp is semi-additive, there is for each
integer n ≥ 0 and spectrum X a multiplication-by-n map

n =
∑
n

idX =

(
X

∆−→
∏
n

X
≃←−
⊕
n

X
∇−→ X

)
.

Since all maps here are natural in X, this yields a natural transformation n : idSp ⇒ idSp.

Exercise 2.5. Show that πk(n) : πk(X)→ πk(X) is just the usual multiplication with n on the
abelian group πk(X), for all k ∈ Z. Moreover, form,m ∈ Z we have n◦m ≃ (nm) = (mn) ≃ m◦n.

Since Sp is an additive category, we may also define −n : X → X as the (additive) inverse of
n : X → X. Again one checks that the effect on homotopy groups will simply be multiplication
with −n. From now on let n ∈ Z be any integer.

Exercise 2.6. Given spectra X,Y , show that the following three endomorphisms of the internal
hom spectrum hom(X,Y ) are homotopic (more-or-less-equivalently, feel free to show this for the
mapping space instead): n (as defined for hom(X,Y )), n∗ (postcomposition by n : Y → Y ) and
n∗ (precomposition by n : X → X).

Let n be an integer and X a spectrum. Motivated by ordinary algebra, we define

X[n−1] := colim(X
n−→ X

n−→ X
n−→ X → · · · )

Note that we have a canonical map X → X[n−1].

Exercise 2.7. Convince yourself that

(1) X[0−1] ≃ 0.
(2) X[n−1] ≃ X if n = ±1.
(3) n : X[n−1]→ X[n−1] is an equivalence.
(4) πk(X[n−1]) ∼= πk(X)[n−1], where the latter inverts n in the sense of abelian groups.

For integers a1, . . . , an+1 we define inductively

X[{a1, . . . , an+1}−1] := (X[{a1, . . . , an}−1])[a−1
n+1] ≃ X[(a1 · · · an+1)

−1]

and if {a1, a2, . . . } = A ⊆ Z is some possibly infinite set of integers, we let

X[A−1] := colim
A0⊆A finite

X[A−1
0 ] ≃ colim(X

a1−→ X
a122−−−→ X

a1a2a3−−−−→ X → · · · )

Again we have a canonical map X → X[A−1].

Exercise 2.8. Let P be a set of primes.

(1) X[(ab)−1] ≃ X[{a, b}−1] = X[a−1][b−1]. For this reason, inverting n is the same as
inverting its prime factors.

(2) X[P−1] ≃ S[P−1]⊗X.
(3) πk(X[P−1]) ∼= πk(X)[P−1] for all k.
(4) For an abelian group A, what is (HA)[P−1]?
(5) There is an equivalence X ≃ X[P−1] if and only if p : X → X is an equivalence for all

p ∈ P . In particular S[P−1] is idempotent in the sense that S[P−1]⊗ S[P−1] ≃ S[P−1].

Definition 2.9. In particular, one can build a functor (−)[P−1] : Sp→ Sp and the canonical
map induces a natural transformation idSp ⇒ (−)[P−1].
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Definition 2.10. We define the p-localization X(p) by inverting all primes except p. We say
that the canonical map X → X(p) exhibits X(p) as the p-localization of X, and say that X is
p-local if it is an equivalence.

Similarly, we define the rationalization XQ by inverting all primes, and say that X is rational
if the canonical map X → XQ is an equivalence.

Exercise 2.11. Let X be a spectrum.

(1) Check that X is p-local (rational) if and only if there is any equivalence X ≃ X(p)

(X ≃ XQ), not necessarily the canonical map.

(2) One can write XQ ≃ colim(X
2−→ X

3−→ X
4−→ X

5−→ X
6−→ X → · · · ).

(3) X is rational if and only if each πk(X) is a rational vector space.
(4) SQ ≃ HQ ≃ (HZ)Q, hence XQ ≃ X ⊗HQ and HQ is idempotent.

Exercise 2.12. For p a prime, S(p) ̸≃ HZ(p).

Exercise 2.13. Let A ∈ Ab. Show that there does not exist a non-zero map HA→ S. Hint 3

Exercise 2.14. Rational spectra are as simple as it gets. Let X be rational.

(1) Show that hom(X,Y ) is rational for any spectrum Y . Similarly, hom(Y,X) is rational
and equivalent to hom(YQ, X).

(2) Show that hom(HQ, X) ≃ X. In particular, there is a non-zero map ΣmHQ→ ΣnHQ
(i.e. an element in π0 homSp(Σ

mHQ,ΣnHQ)) if and only if m = n.

(3) If ([S fi−→ X])i is a Q-basis of π0X, then
⊕

i Q
(fi)Q−−−→ X is an isomorphism in degree 0.

(4) There is an equivalence
⊕

n∈Z Σ
nHπnX

≃−→ X.
(5) For any spectrum Y , write out hom(Y,X) explicitly using the above.
(6) If Y is also rational, then the natural map of Exercise 2.3(4) is an isomorphism. In

particular, we have a rational Künneth formula

H∗(X;Q)⊗Q H∗(Y ;Q)
∼=−→ H∗(X ⊗ Y ;Q), X, Y ∈ Sp.

Exercise 2.15 (⋆). Show that we also have a Künneth formula for Fp, for any prime p:

H∗(X;Fp)⊗Fp
H∗(Y ;Fp)

∼=−→ H∗(X ⊗ Y ;Fp), X, Y ∈ Sp.

Related Exercises. See Exercises 3.7 and 4.9.

2.2. Modding out integers.

Definition 2.16. For any spectrum X, we denote X/n := cofib(X
n−→ X).

Exercise 2.17. Let X be any spectrum.

(1) What is the cofiber of the zero map 0: X → X?
(2) Show X/n ≃ S/n⊗X.
(3) X/p is p-local. In fact, (X(p))/p ≃ X/p ≃ (X/p)(p).
(4) Simplify (X/p)/q for primes p, q (not necessarily distinct!).
(5) Given an abelian group A, describe the homotopy groups of (HA)/n.
(6) How do X/m,X/n and X/(mn) relate?
(7) hom(X,Y )/n and hom(X/n, Y ) and hom(X,Y/n) all agree up to a shift.
(8) For X ∈ Sp and a set of primes P , the following are equivalent:

(a) X ≃ X[P−1].
(b) X/p = 0 for all p ∈ P .
(c) hom(Y/p,X) = 0 for all Y .

Hint 3 It suffices to show this for A = Z.
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(9) X ≃ 0 if and only if X/p ≃ 0 for all primes p and XQ ≃ 0.

Exercise 2.18. S/n admits a unital multiplication (i.e. a map µ : S/n⊗ S/n→ S/n such that
µ ◦ (S/n ⊗ η) = id where η : S → S/n is the canonical map) if and only if n : S/n → S/n is
nullhomotopic. In particular, S/2 does not admit a unital multiplication.

Exercise 2.19. n2 is always nullhomotopic on X/n. Hint 4

Exercise 2.20 (⋆). We can be a bit more specific regarding the previous exercise:

(1) Show that π2(S/2) ∼= Z/4. In particular πn(X/2) need not be 2-torsion, and 2: X/2→
X/2 need not be nullhomotopic.

(2) If n is odd, then n is nullhomotopic on X/n.

In fact, one can show that n : X/n → X/n is nullhomotopic if and only if n ̸≡ 2 mod 4,
although this is beyond the scope of a reasonable exercise.

Exercise 2.21 (⋆). Show that there exists a spectrum X so that each πnX is 2-torsion, but
2: X → X is not nullhomotopic.

2.3. Completions at primes and the Fracture Square. The completion at a prime p is
defined analogously to the completion in abelian groups:

X∧
p := lim(· · · → X/p3 → X/p2 → X/p)

where the maps X/pn+1 → X/pn are induced by the map of cofiber sequences

X X X/pn+1

X X X/pn

pn+1

p

pn

By the universal property of the limit, we obtain a canonical map X → X∧
p , which we say

exhibits Xp as the p-completion of X. In fact, p-completion becomes a functor (−)∧p : Sp→ Sp,
and the canonical map upgrades to a natural transformation idSp ⇒ (−)∧p .

Exercise 2.22. Let X be a spectrum and p a prime.

(1) X is p-complete if and only if hom(S[p−1], X) ≃ lim(· · · → X
p−→ X

p−→ X) ≃ 0.
(2) X∧

p is p-complete.
(3) (X(p))

∧
p ≃ X∧

p ≃ (X∧
p )(p). In particular, p-complete spectra are p-local.

(4) (X/pn)∧p ≃ X/pn ≃ (X∧
p )/p

n. In particular, X/pn is p-complete.
(5) If X is p-complete and X/p ≃ 0, then X ≃ 0.
(6) If X is rational and Y is p-complete, then hom(X,Y ) = 0. In particular, if X is rational

and p-complete, then X = 0.

The following is often very useful for dealing with sequential inverse limits

Exercise 2.23 (Milnor Sequence). Let X ≃ lim(· · · → X3 → X2 → X1) be a sequential inverse
limit of spectra. Then for every k ∈ Z, there is a short exact sequence

0→ lim
n

(1)πk+1Xn → πkX → lim
n

πkX → 0

Here the first term denotes the first derived limit in the sense of homological algebra. In particular,
if the tower of abelian groups (πk(Xn))n satisfies the Mittag–Leffler condition, then we have
πk(X) ≃ limn πk(Xn).

Hint 4 Use the cofiber sequence X/n → ΣX
n−→ ΣX, which in particular composes to 0
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Exercise 2.24 (p-completion in abelian groups vs spectra). We say an abelian group A is
derived p-complete if HA is a p-complete spectrum.

(1) If A is p-complete as an abelian group, then it is also derived p-complete. Moreover, if A
has bounded p-power torsion, the converse also holds.

(2) Let Cp∞ := Z[p−1]/Z denote the Prüfer group at the prime p. Show that the ordinary
p-completion of Cp∞ vanishes, and compare this with the p-completion of HCp∞ .

(3) Compare the ordinary and spectrum-level p-completions of
⊕

n≥1 Z/pn.

Given a spectrum X, we now have canonical maps ηpX : X → X∧
p for every prime p, which

induce a natural map (ηpX)p : X →
∏

p X
∧
p . Moreover, every spectrum has a natural map

ηQX : X → XQ to its rationalization. We can therefore build a natural commutative square

X
∏

p X
∧
p

XQ (
∏

p X
∧
p )Q

(ηp
X)p

ηQ
X ηQ∏

p Xp

((ηp
X)p)Q

One can build an analogous naturality square in the category of abelian groups, and it is
well-known that it is a pullback square there (convince yourself of this if you have not seen this
before).
Exercise 2.25 (Arithmetic Fracture Squares).

(1) Show that the above square is a pullback square in Sp.
(2) Show that one similarly has pullback squares

X Xp X(p) Xp

X[p−1] Xp[p
−1] XQ (Xp)Q

⌟ ⌟

(3) The functors (−)Q and (−)p for all primes p are jointly conservative, i.e. if X ∈ Sp with
XQ = 0 = Xp for all primes p, then X = 0.

Related Exercises. See Exercises 3.8 and 4.8.

3. Subcategories of Spectra

Definition 3.1. Let C ⊆ Sp be a full subcategory of spectra.

(1) We say C is a stable subcategory if it is closed under finite limits and colimits in C. In
other words, if I → Sp is some finite diagram of spectra whose objects lie in C, then also
the limit or colimit of this diagram lies in Sp.

(2) We say C is a thick subcategory if it is a stable subcategory and furthermore closed
under retracts, i.e. if Y ∈ C and there are maps s : X → Y and r : Y → X in Sp such
that rs ≃ idX (we say X is a retract of Y ), then also X ∈ C.

(3) We say C is a localizing subcategory if it is a thick subcategory and also closed under all
colimits.

(4) We define the thick subcategory generated by C as the smallest thick subcategory of
spectra containing C, and denote it Thick(C). We analogously define the localizing
subcategory loc(C) generated by C.

The following result is also one of the most important properties of Sp:

Theorem 3.2. Sp is generated under colimits and shifts by S, i.e. loc({S}) = Sp. In particular,
if C ⊆ Sp is a localizing subcategory and S ∈ C, then C = Sp.

https://en.wikipedia.org/wiki/Prüfer_group
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Exercise 3.3. Let C ⊆ Sp be a full subcategory.

(1) If C is closed under shifts (if X ∈ C then also ΣnX ∈ C for all n ∈ Z) and cofibers (if
f : X → Y is a map of spectra and X,Y ∈ C, then also cofib(f) ∈ C), then C is a stable
subcategory.

(2) If C is a stable subcategory and X → Y → Z is a cofiber sequence of spectra, then if
two of X,Y, Z are in C, then also the third lies in C.

(3) If C is closed under direct sums (if Xi ∈ C for i ∈ I then also
⊕

i∈I Xi ∈ C) and cofibers,
then C is closed under all colimits.

(4) If C is a localizing subcategory and X ∈ C, then we also have Y ⊗X ∈ C for any Y ∈ Sp.

The above gives rise to the extremely useful proof-principle of what I call “structural induction”.
Say you want to prove that some property P holds for all spectra. Then it suffices to show that
the full subcategory C ⊆ Sp of spectra satisfying the property is localizing and contains S. A
common example of this is the following:

Exercise 3.4. Let F,G : Sp→ Sp be functors preserving I-indexed colimits, and suppose that
α : F ⇒ G is a natural transformation. Then C = {X ∈ Sp | αX is an equivalence} ⊆ Sp is
closed under I-indexed colimits in Sp. In particular, if F,G preserve all colimits (and hence
automatically also finite limits, since we are in a stable situation), and αS is an equivalence, then
α is an equivalence.

Exercise 3.5. Let C ⊆ Sp be some full subcategory. Define Thick0(C) := 0, and Thick1(C) as
the retract-closure of C, and inductively Thickn+1(C) as the full subcategory on those spectra
that can be written as a retract of a spectrum Y which sits in a cofiber sequence X → Y → Z
with X ∈ Thick1(C) and Z ∈ Thickn(C). Show that:

(1) Thick(C) =
⋃

n≥0 Thickn(C).
(2) Each Thickn(C) is closed under retracts and shifts.
(3) If X → Y → Z is a cofiber sequence with X ∈ Thickm(C) and Z ∈ Thickn(C), then

Y ∈ Thickn+m(C).

Exercise 3.6. Let C,D ⊆ Sp be full subcategories. Show that

Thick(C)⊗Thick(D) := {X ⊗Y | X ∈ Thick(C), Y ∈ Thick(D)} ⊆ Thick({c⊗ d | c ∈ C, d ∈ D})

Exercise 3.7. Let P be a set of primes. The full subcategory Sp[P−1] ⊆ Sp of spectra for which
we have X ≃ X[P−1] is closed under limits and colimits. In particular, the categories of p-local
and rational spectra Sp(p) and SpQ are closed under limits and colimits.

Exercise 3.8. The full subcategory on p-complete spectra Sp∧p ⊆ Sp is closed under limits, but
not under all colimits.

Exercise 3.9. Let F : Sp→ Sp be a functor which preserves colimits. Then there is a natural
equivalence F (S)⊗− ≃ F .

Exercise 3.10 (⋆). Let C ⊆ D(Z) be the smallest full subcategory which is stable, closed under
limits, and contains Z. Then C = D(Z). Show that this is not the case for Sp and S in place of
D(Z) and Z.

4. The Postnikov t-structure

Theorem 4.1. There is a functor τ≤0 : Sp→ Sp together with a natural transformation idSp ⇒
τ≤0 so that for every spectrum X, the spectrum τ≤0X is coconnective and the map X → τ≤0X
is an isomorphism on πn for n ≤ 0. For n ∈ Z we define

τ≤n := Σn ◦ τ≤0 ◦ Σ−n : Sp→ Sp.
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Then τ≤nX is n-coconnective and the map X → τ≤nX is an isomorphism in degrees ≤ n.
Moreover:

(1) For n ∈ Z, we define τ≥nX := fib(X → τ≤n−1X). Then τ≥n is n-connective and the
canonical map τ≥nX → X is an isomorphism in degrees ≥ n. This becomes a functor,
so that we have a natural cofiber sequence

τ≥nX → X → τ≤n−1X.

(2) Both τ≥n and τ≤n : Sp→ Sp preserve products, coproducts and filtered colimits.
(3) For any a, b ∈ Z one has τ≤b ◦ τ≥a ≃ τ≥a ◦ τ≤b, and denotes the composite by τ[a,b].

This data is called the Postnikov t-structure on Sp.

Definition 4.2. Let X be a spectrum. We say that X is

(1) n-connective if πkX = 0 for k < n, i.e. τ≥nX
≃−→ X.

(2) connective if it is 0-connective.
(3) bounded below if it is n-connective for some n ∈ Z.
(4) n-coconnective if πkX = 0 for k > n, i.e. X

≃−→ τ≤nX.
(5) coconnective if it is 0-coconnective.
(6) bounded above if it is n-coconnective for some n.
(7) bounded if πnX = 0 for |n| ≫ 0, i.e. X ≃ τ[a,b]X for some a, b ∈ Z.
(8) static5 if its homotopy groups are concentrated in degree 0, in which case it lies in the

image of H : Ab ↪→ Sp. The image of this fully faithful functors is also often denoted
Sp♡, the “heart” of this t-structure on spectra.

We denote by Sp≥n respectively Sp≤n the full subcategory on n-connective respectively n-
coconnective spectra.

Exercise 4.3. Let X be a spectrum.

(1) Sp≥n is closed under colimits, and Sp≤n is closed under limits.
(2) If X is m-connective and Y is n-connective, then X ⊗ Y is (m+ n)-connective.

(3) If (Xn) is a collection of bounded spectra, then
⊕

n Σ
nXn

≃−→
∏

n Σ
nXn.

(4) There are natural maps τ≥nX → τ≥n−1X. The canonical map colimn τ≥−nX → X
is an equivalence. The sequence we are taking the colimit along τ≥nX → τ≥n−1X →
τ≥n−2X → · · · is often called the Whitehead tower of X.

(5) There are natural maps τ≤n+1X → τ≤nX, and the canonical map X → limn τ≤nX is an
equivalence. The sequence · · · → τ≤n+1X → τ≤nX → τ≤n−1X → · · · is often called the
Postnikov tower of X.

(6) We have equivalences

fib(τ≤nX → τ≤n−1X) ≃ ΣnHπnX ≃ cofib(τ≥n+1X → τ≥nX).

In particular, we have pullback squares of spectra

Σ3Hπ3X 0 ΣHπ1X 0

· · · τ≤3X τ≤2X τ≤1X τ≤0X · · ·

Σ2Hπ2X 0

⌟ ⌟

⌟

5often also “discrete”, though nowadays it makes sense to reserve this for certain kinds of objects in condensed
mathematics.
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Definition 4.4. One can rotate these fiber sequences to obtain the following right pullback
square

ΣnHπnX τ≤nX 0

0 τ≤n−1X Σn+1HπnX

⌟ ⌟

kn

The map kn is called the n-th k-invariant of X.

π0 homSp(τ≤n−1X,Σn+1HπnX) ∼= π−(n+1) homSp(τ≤n−1X,HπnX) =: Hn+1(τ≤n−1X;πnX)

i.e. can be viewed as a cohomology class in degree n+ 1 of τ≤n−1 with coefficients in πnX ∈ Ab.

Remark 4.5. Note that in the case that X is rational, it follows from Exercise 2.14 that all the
k-invariants vanish, which is another way to see part (3) of that exercise.

Exercise 4.6. Let C ⊆ Sp be a full stable subcategory with HZ ∈ C.
(1) C contains all bounded spectra.
(2) If C is closed under sequential (co)limits, then it contains all bounded below (above)

spectra. In the case that both applies, it contains all spectra.

Exercise 4.7 (Hurewicz and Whitehead). Recall the natural map π∗(X)⊗ π∗(Y )→ π∗(X ⊗ Y )
from Exercise 2.3(4). By restriction, we obtain a natural map

π0(X)⊗ π0(Y )→ π0(X ⊗ Y ), [S f−→ X]⊗ [S g−→ Y ] 7→ [S ≃ S⊗ S f⊗g−−−→ X ⊗ Y ]

(1) Show that the above map is an isomorphism for connective X,Y . In particular, we see
that π0(HA⊗HB) ∼= A⊗B for abelian groups A,B, as claimed in Exercise 2.3(3).

(2) As a special case of the above, use the canonical map S→ τ≤0S ≃ HZ (which corresponds
to 1 ∈ Z ∼= π0(HZ) ∼= π0 mapSp(S, HZ)) to show that for X connective, there is a natural
isomorphism

π0(X)
∼=−→ π0(HZ⊗X) =: H0(X;Z).

and a surjection π1(X) ↠ H1(X;Z). More generally, if X is n-connective, the map is an
isomorphism in degree n and a surjection in degree n+ 1.

(3) Suppose that X is bounded below and that X ⊗ Z ≃ 0. Then X ≃ 0.
(4) If f : X → Y is a map of bounded below spectra such that Z⊗ f is an equivalence, then

f is an equivalence.

Exercise 4.8. Let p be a prime. Show that a spectrum X is p-complete if and only if each
HπnX is p-complete.

Exercise 4.9. Every spectrum decomposes as the direct sum of a rational spectrum and a
spectrum which does not have any (non-trivial) rational subgroups in any homotopy group.

Exercise 4.10. Let a < b be integers and let Sp[a,b] denote the full subcategory subcategory on
spectra with homotopy groups concentrated in degrees a ≤ k ≤ b.

(1) Let n = b− a, and consider a chain of composable maps X0
f0−→ X1

f1−→ X2 → · · · → Xn.
If all the Xi lie in Sp[a,b] and each fi is zero on all homotopy groups, then the composite
X0 → Xn is nullhomotopic.

(2) Conclude that if X is a bounded spectrum and p some prime such that each πn(X) is
p-power torsion, then p is a nilpotent endomorphism of X.
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Exercise 4.11. Let X be a bounded below spectrum, say (without loss of generality) connective.
Show that we can write X = colimn Xn and⊕

I1
S 0

⊕
I3
Σ2S 0

⊕
I0
S X0 X1 X2 X3 · · ·

⊕
I2
ΣS 0

⌟

⌟

⌟

for suitable sets of n-cells In. Show also that each Hn(X;Z) = πn(X ⊗ Z) is finitely generated if
and only if all the In may be chosen finite. In this case, one says that X is of finite type. By
means of a spectral sequence for computing π∗(X ⊗Z) (see [Lur, Proposition 7.2.1.17] for R = S)
and a Serre–class argument, one can show that if X is bounded below and π∗(X) degreewise
finitely generated, then also H∗(X;Z) is, i.e. X is of finite type.

Exercise 4.12. Let X be a spectrum of finite type. Show that the functor X ⊗ − preserves
uniformly bounded below products and sequential limits. Concretely, this means

(1) If Yi, i ∈ I is a collection of spectra, and there is some n such that all of them are
n-connective, then the canonical map X ⊗

∏
i Yi →

∏
i X ⊗ Yi is an equivalence

(2) If · · · → Y3 → Y2 → Y1 is a tower of spectra and there is some n such that all the Yk are
n-connective, then X ⊗ limn Yn → limn X ⊗ Yn is an equivalence.

Use this to conclude that S∧p ⊗HZ ≃ HZ∧
p .

Similarly, show that the functor homSp(X,−) preserves uniformly bounded above filtered
colimits.

Exercise 4.13 (⋆). Find an example of spectra X,Y such that X is connective and τ≥0(X⊗Y ) ̸≃
τ≥0X ⊗ τ≥0Y = X ⊗ τ≥0Y .

Exercise 4.14 (⋆⋆). Find an example of spectra X,Y such that there are equivalences τ≤nX ≃
τ≤nY for all n, but X ̸≃ Y .

5. Finite Spectra

Remark 5.1. You may freely use that every filtered diagram has a cofinal map from a filtered
/ directed poset, so that without loss of generality, every instance of “filtered colimit” may be
replaced by “colimit over a directed poset”, see Kerodon 0622 for a formal statement and proof.

Definition 5.2. Let X be a spectrum. We say that X is

(1) finite if it lies in the smallest stable subcategory generated by S.
(2) compact if homSp(X,−) : Sp → Sp preserves filtered colimits. This is equivalent to

mapSp(X,−) : Sp→ An preserving filtered colimits, or to each πn homSp(X,−) : Sp→ Ab
preserving filtered colimits.

(3) dualizable if there exists a spectrum DX (the dual) and evaluation / coevaluation maps
ev : DX ⊗X → S and cv : X ⊗DX → S satisfying the zig-zag/triangle/snake identities,
that the composites

X
cv⊗X−−−−→ X ⊗DX ⊗X

X⊗ev−−−−→ X and DX
DX⊗cv−−−−−→ DX ⊗X ⊗DX

ev⊗DX−−−−−→ DX

are both homotopic to the identity.

Denote the corresponding full subcategories on these spectra by Spfin, Spω, Spdbl.

https://kerodon.net/tag/0622
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The goal of this section is to show that Spfin = Spω = Spdbl, and some other characterizations
of this collection of spectra.

Exercise 5.3. Show that a finite spectrum is bounded below and has finitely generated homotopy
groups.

Exercise 5.4. This exercise requires a bit more background knowledge on categories.

(1) Convince yourself that a non-empty category with colimits is filtered.
(2) Let X be any spectrum and consider the pullback of categories

Spfin/X Sp/X

Spfin Sp

⌟

Informally, Spfin/X is the category with objects the maps V → X where V is finite, and

morphisms commuting triangles. Because Spfin, Sp,SpX have finite colimits and the
functors Spfin ⊆ Sp and Sp/X → Sp preserve them, we see that also Spfin/X have finite
colimits, and hence is filtered.

(3) Show that the canonical map colimV ∈Spfin
/X

V → X is an equivalence. In particular, Sp

is generated under filtered colimits by Spfin. Since Spfin is itself generated as a stable
category by S, we get that loc(S) = Sp, proving Theorem 3.2. Hint 6

Exercise 5.5 (More on Compactness).

(1) Use the fact that each πn preserves filtered colimits to conclude that S is compact.
(2) Show that Spω ⊆ Sp is a thick subcategory.
(3) Suppose that that X = colimi Xi is a filtered colimit, and that X is compact. Show that

X is a retract of one of the Xi.
(4) Let (Xi)i be a filtered diagram of spectra, without loss of generality indexed on a directed

poset I. If for each i there exists some j ≥ i such that Xi → Xj is nullhomotopic, then
colimi Xi ≃ 0. If all the Xi are compact, then the converse holds.

Exercise 5.6 (More on Dualizability). Let X be a dualizable spectrum with dual DX.

(1) S is dualizable with dual DS = S.
(2) DX is dualizable with dual DDX ≃ X.
(3) The coevaluation and evaluation give rise to unit and counit of an adjunction DX ⊗− ⊣

X ⊗−. Note that we also have X ⊗− ⊣ DX ⊗−.
(4) We have DX ≃ hom(X, S).
(5) Under the equivalence DX ≃ hom(X, S), the evaluation ev of the duality datum corre-

sponds to the counit εXS : hom(X, S) ⊗X → S of the adjunction X ⊗ − ⊣ hom(X,−)
evaluated at S.

(6) For a spectrum Y , the following are equivalent:
(a) Y is dualizable.
(b) There exists a map c : S→ Y ⊗hom(Y, S) such that the following diagram commutes

Y ⊗ hom(Y, S)⊗ Y

Y Y

Y⊗εYSc⊗Y

Hint 6 Use that πn preserves filtered colimits, argue for surjectivity and injectivity separately.
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(c) For every spectrum Z, the canonical map φZ : hom(Y,S)⊗ Z → hom(Y,Z) is an

equivalence. This map is adjoint to hom(Y, S)⊗ Y ⊗ Z
εYS ⊗Z−−−−→ Z.

(d) φY : hom(Y, S)⊗ Y → hom(Y, Y ) is an equivalence.
(e) Y ⊗ − preserves limits, i.e. is a right adjoint (Sp is presentable and the adjoint

functor theorem applies.)7

(7) Conclude from (c) that Spdbl ⊆ Sp is a thick subcategory.

Exercise 5.7. Here we show that Spfin = Spdbl = Spω.

(1) Conclude from Exercises 5.4, 5.5 and 5.6 that Spfin ⊆ Thick(S) = Spdbl = Spω (note that

Thick(S) is just the retract-closure of Spfin).
(2) Show that the following full subcategory of spectra is thick:

C = {X ∈ Sp | X bounded below and H∗(X;Z) finitely generated}

where finitely generated does not mean degreewise, but
⊕

n∈Z Hn(X;Z) should be finitely
generated, so in particular only be non-zero in finitely many degrees.

(3) Show that C = Spfin. Conclude that Spfin is already thick, hence agrees with Spω. Hint 8
(4) Finite spectra are closed under tensor products.

Exercise 5.8. Let X be finite and Y have finitely generated homotopy groups. Then also
hom(X,Y ) has finitely generated homotopy groups hom(X,Y ).

Exercise 5.9. Show that the set of isomorphism classes of finite spectra is countable (and the
group of maps between any two of these is also countable, in fact finitely generated).

Exercise 5.10 (Invertible Spectra). Call a spectrum X invertible if there exists a spectrum
X−1 with X ⊗X−1 ≃ S. Show that if X is invertible, there is some n ∈ Z and an equivalence
X ≃ ΣnS. Feel free to use Exercises 2.14(6) and 2.15.

Exercise 5.11 (⋆). Show that if a finite spectrum is bounded above, then it is already zero.

Exercise 5.12 (⋆). An object X in a category C is called projective if mapC(X,−) preserves
geometric realizations. Show that the only projective object in Sp is 0.9

Exercise 5.13 (⋆). Suppose we have a map of spectra η : S→ R such that R⊗ (S→ R) : R→
R ⊗R is an equivalence (one says that R is an idempotent ring spectrum). Show that if R is
also dualizable, then S→ R is a split epimorphism, i.e. R is a retract of S.

Exercise 5.14 (⋆). Let κ be an infinite regular cardinal. There is an associated notion of
κ-filtered category / κ-filtered poset, where instead of asking for cones over finite subdiagrams, we
ask for the existence of cones over κ-small subdiagrams. Here κ-small always means cardinality
less than κ. In the case κ = ω we recover our previous notion of filtered diagrams. As before,
one defines κ-compact objects as those for which map(X,−) preserves κ-filtered colimits. For an
in-depth treatment of these notions, I recommend [Hau25, Section 9]. Here, we will only consider
them specifically in spectra. Let C ⊆ Sp be the smallest stable stable subcategory that contains
S and is closed under κ-small colimits, and let Spκ be the full subcategory on κ-compact spectra.

(1) Show that C ⊆ Spκ.

7Warning: The equivalence of this point with the remaining ones is a special property of Sp, and is generally
false for other stable presentably symmetric monoidal categories C. The crucial point is that we need the
adjunction to be C-linear. For Sp this is automatic since Sp is idempotent in PrLst).

Hint 8 For the inclusion ⊇, argue by induction over the lowest non-trivial homology group and use Exercise

3.3(2).
9This is in fact true in any stable category.

https://en.wikipedia.org/wiki/Regular_cardinal
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(2) Show that C is small, i.e. has only a set of isomorphism classes of objects. Hint 10
(3) Convince yourself that Exercise 5.5(3,4) still hold true for “compact” replaced by “κ-

compact”.
(4) Convince yourself that the same argument as in Exercise 5.4 shows that C generates Sp

under κ-filtered colimits.
(5) Note that C is closed under retracts (for κ = ω we showed this in Exercise 5.7, and for

uncountable κ this follows since C is closed under sequential colimits) Conclude that
C = Spκ.

(6) For uncountable κ, a spectrum X is κ-compact if and only if |π∗X| < κ. To this end,
proceed in the following steps:11

(a) D := {X ∈ Sp | |π∗X| < κ} is thick and closed under κ-small coproducts.
(b) Convince yourself that D is therefore closed under κ-small colimits, and conclude

Spκ ⊆ D.
(c) Given X ∈ D, show that F :=

⊕
α∈π∗X

Σ|α|S lies in Spκ and the map X →
cofib(F → X) is zero on all homotopy groups.

(d) Use the previous point to inductively construct a sequence X0 → X1 → · · · so
that colimn Xn ≃ X and each Xn lies in Spκ. Conclude that X ∈ Spκ, and hence
Spκ = D.

6. Bousfield Localizations of Spectra

Exercise 6.1. We show that ⟨IQ/Z⟩ contains many spectra.

(1) Show that Z⊗ IQ/Z = 0.
(2) Conclude that IQ/Z kills all bounded above spectra, and hence IQ/Z ⊗ IQ/Z = 0. In

particular, this gives an example of a non-trivial spectrum E which is not E-local!
(3) IQ/Z kills every homotopy MU-module, hence every homotopy-module over every complex-

orientable ring spectrum.
(4) IQ/Z does not kill any finite spectrum.
(5) Find a non-finite spectrum that is not killed by IQ/Z.

7. Rings and Modules in Spectra

Exercise 7.1. Every Z-module splits.

Exercise 7.2 (Connective Idempotent Spectra). Call a ring spectrum idempotent if the canonical

map R
η⊗R−−−→ R⊗R is an equivalence. Show that if R is connective and idempotent, then there

is an equivalence R ≃ HA where Z ≤ A ≤ Q.

8. Phantom Maps

Phantom maps are one crucial distinction of Sp and more algebraic categories such as D(Z).
Definition 8.1. A map φ : X → Y of spectra is called phantom if for every map F → X from a
finite spectrum F , the composite F → X → Y is nullhomotopic.

Exercise 8.2. Let φ : X → Y be a map of spectra.

(1) phantom maps form a 2-sided ideal, i.e. if φ is phantom then also fφg is phantom for
suitably composable maps f, g.

(2) The following are equivalent:
(a) φ is phantom.

Hint 10 Start with Spfin and inductively add κ-small colimits. Show that each step stays small, and this

process terminates at stage κ.
11I learned this proof strategy from Denis Nardin.
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(b) π∗(φ⊗ V ) is null for every spectrum V .
(c) π∗(φ⊗ V ) is null for every finite spectrum V .

(3) For any collection of spectra (Xi)i∈I , consider the map inc:
⊕

i Xi →
∏

i Xi. Then
fib(inc)→

⊕
i Xi is phantom.

(4) For any spectrum X, we have a cofiber sequence
⊕

F∈Spfin
/X

F → X
φ−→ X̃, where the first

map is the obvious one, and φ is a phantom map. Show that every phantom map out of
X factors through φ.

(5) Conclude that there are no non-zero phantom maps out of X if and only if X is a retract
of a direct sum of finite spectra.

Note that since phantom maps are zero on homotopy groups, it follows that a countably
infinite composition (sequential colimit) of them is 0. Moreover, Exercise 4.10 shows that on the
subcategory of spectra bounded in a fixed finite range, phantom maps are nilpotent. As it turns
out, something much stronger is true: phantom maps form a square-zero ideal!

Theorem 8.3 ([CS98, Corollary 4.7]). The composite of two phantom maps is zero.

Exercise 8.4. Use the above theorem and Exercise 8.2(4) to show that every spectrum is a
retract of a spectrum X sitting in a cofiber sequence of the form

⊕
i Fi →

⊕
j F

′
j → X, where

all the Fi and F ′
j are finite spectra. In particular, we have Thick(C) = Sp where C is the full

subcategory of spectra on direct sums of finite spectra.

Exercise 8.5. We investigate how phantom maps relate to Brown-Comenetz duality. Let Z be
a spectrum such that each πnZ is finitely generated.

(1) For any spectrum X, the map fib(X → I2Q/ZX)→ X is phantom.

(2) A map X → IQ/ZY is phantom if and only if it is zero.
(3) If φ : X → Y is phantom, then IQ/Zφ is zero.

(4) A map X → Y is phantom if and only if X → Y → I2Q/ZY is zero. Conclude that there

exists no non-zero phantom map to Y if and only if Y → I2Q/ZY is a split monomorphism.

(5) fib(Z → I2Q/ZZ) is rational.

(6) The subgroup of phantom maps Phantom(X,Z) ≤ π0 hom(X,Z) is divisible.
(7) There exists a non-zero phantom map to Z if and only if ZQ ̸= 0.
(8) φ : X → Z is phantom if and only if [φ] ∈ π0 hom(X,Z) is divisible Hint 12
(9) For any X, the following are equivalent:

(a) X ⊗ IQ/ZZ = 0.
(b) Phantom(V ⊗X,Z) = π0 hom(V ⊗X,Z) for all V .
(c) Phantom(V ⊗X,Z) = π0 hom(V ⊗X,Z) for all finite V .
(d) hom(X,Z) is rational.

(10) All maps from a bounded above spectrum to a finite spectrum are phantom.

Exercise 8.6. By the previous exercise, we see that hom(Z, S) is rational, and consists only
of phantom maps. Show that it is given by Σ−1H Ext(Q,Z). Similarly, in combination with
Exercise 6.1, we see that hom(X, S) is rational for many non-finite spectra, which then allows
for an easy calculation of said hom-spectrum.
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